Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''International Oxygraph Course''' (IOC), see [[O2k-Workshops]].". Since there have been only a few results, also nearby values are displayed.

Showing below up to 126 results starting with #1.

View (previous 250 | next 250) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Dihydro-orotate dehydrogenase  + ('''Dihydro-orotate dehydrogenase''' is an '''Dihydro-orotate dehydrogenase''' is an electron transfer complex of the inner mitochondrial membrane, converting dihydro-orotate (Dho) into orotate, and linking electron transfer through the [[Q-junction]] to pyrimidine synthesis and thus to the control of biogenesis.sis and thus to the control of biogenesis.)
  • Dihydroethidium  + ('''Dihydroethidium''' (also called hydroet'''Dihydroethidium''' (also called hydroethidine) is a cell permeant fluorescent probe used to analyse superoxide presence. It is a reduced form of ethidium that presents blue fluorescence, and after oxidation by superoxide becomes able to intercalate DNA and emits red fluorescence (excitation wavelength ~518–535 nm, emission ~605–610 nm). It has been used to detect superoxide by HPLC and by fluorescence microscopy.de by HPLC and by fluorescence microscopy.)
  • Dimension  + ('''Dimensions''' are defined in the SI {'''''Dimensions''' are defined in the SI {''Quote''}: Physical quantities can be organized in a system of dimensions, where the system used is decided by convention. Each of the seven base quantities used in the SI is regarded as having its own dimension. .. All other quantities, with the exception of [[count]]s, are derived quantities, which may be written in terms of base quantities according to the equations of physics. The dimensions of the derived quantities are written as products of powers of the dimensions of the base quantities using the equations that relate the derived quantities to the base quantities.</br></br>There are quantities ''Q'' for which the defining equation is such that all of the dimensional exponents in the equation for the dimension of ''Q'' are zero. This is true in particular for any quantity that is defined as the ratio of two quantities of the same kind. .. There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a [[count]]. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. {''end of Quote'': p 136, [[Bureau International des Poids et Mesures 2019 The International System of Units (SI)]]}[[Bureau International des Poids et Mesures 2019 The International System of Units (SI)]]})
  • Dimethyl sulfoxide  + ('''Dimethyl sulfoxide''' is a polar aproti'''Dimethyl sulfoxide''' is a polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. DMSO may also be used as a cryoprotectant, added to cell media to reduce ice formation and thereby prevent cell death during the freezing process.nt cell death during the freezing process.)
  • Dinitrochlorobenzene  + ('''Dinitrochlorobenzene (1-chloro-2,4-dinitrobenzene)''' (DNCB) is a glutathione (GSH) inhibitor.)
  • Display DatLab help  + ('''Display DatLab help''' In this section'''Display DatLab help'''</br></br>In this section, we present some issues that could happen during your data analysis related to the graphs display and how to fix them quickly.</br></br>Case in which an issue might occur:</br></br>::* While analysing your data, trying to close the program while the graph is still being loaded. If you cancel the closing window, the graph will not be loaded at the screen.</br></br>In the event of a frozen display of the graphs, try the alternatives below:</br></br>::* Click on: Graph > Autoscale time axis</br>::* Click on: Graph > Scaling (F6); then press OK to confirm the scaling and induce the program to reload the graphs (no changes in the graphs are required). graphs (no changes in the graphs are required).)
  • Dyscoupled respiration  + ('''Dyscoupled respiration''' is [[LEAK respiration]]'''Dyscoupled respiration''' is [[LEAK respiration]] distinguished from intrinsically (physiologically) uncoupled and from extrinsic experimentally [[Uncoupler|uncoupled]] respiration as an indication of extrinsic uncoupling (pathological, toxicological, pharmacological by agents that are not specifically applied to induce uncoupling, but are tested for their potential dyscoupling effect). Dyscoupling indicates a mitochondrial dysfunction. </br></br>In addition to intrinsic uncoupling, dyscoupling occurs under pathological and toxicological conditions. Thus a distinction is made between physiological uncoupling and pathologically defective dyscoupling in mitochondrial respiration. dyscoupling in mitochondrial respiration.)
  • Ectotherms  + ('''Ectotherms''' are organisms whose body temperatures conform to the thermal environment. In many cases, therefore, ectotherms are [[poicilotherms | poicilothermic]].)
  • Editorial board participation  + ('''Editorial board participation''' is a topic addressed in [[COPE core practices for research]].)
  • Electric current density  + ('''Electric current density''' is [[current]] divided by area, ''j''=''I''·''A''<sup>-1</sup> [C·m<sup>-2</sup>]. Compare: [[density]].)
  • Electron flow  + ('''Electron flow''' through the mitochondr'''Electron flow''' through the mitochondrial [[Electron transfer pathway]] (ET-pahway) is the scalar component of chemical reactions in oxidative phosphorylation ([[OXPHOS]]). Electron flow is most conveniently measured as oxygen consumption (oxygraphic measurement of [[oxygen flow]]), with four electrons being taken up when oxygen (O<sub>2</sub>) is reduced to water.xygen (O<sub>2</sub>) is reduced to water.)
  • Electron-transferring flavoprotein Complex  + ('''Electron-transferring flavoprotein Comp'''Electron-transferring flavoprotein Complex''' (CETF) is a respiratory Complex localized at the matrix face of the inner mitochondrial membrane, supplies electrons to Q, and is thus an enzyme Complex of the mitochondrial [[Electron transfer pathway]] (ET-pathway). CETF links the ß-oxidation cycle with the membrane-bound electron transfer system in [[fatty acid oxidation]] (FAO).[fatty acid oxidation]] (FAO).)
  • Electronic-TIP2k Upgrading\O2k-Main Unit Series A-D  + ('''Electronic-TIP2k Upgrading\O2k-Main Unit Series A-D - Former Product ''': not required for [[O2k-Core]], the [[O2k-Main Unit]] has to be returned to the OROBOROS workshop.)
  • Electronic-TIP2k Upgrading\O2k-Main Unit Series E  + ('''Electronic-TIP2k Upgrading\O2k-Main Uni'''Electronic-TIP2k Upgrading\O2k-Main Unit Series E - Former Series ''': not required for [[O2k-Core]], free of charge for Series E in conjunction with the purchase of the [[TIP2k-Module]], the [[O2k-Main Unit]] has to be returned to the OROBOROS workshop.s to be returned to the OROBOROS workshop.)
  • Enable DL-Protocol editing  + ('''Enable DL-Protocol editing''' is a nove'''Enable DL-Protocol editing''' is a novel function of DatLab 7.4 offering a new feature in DL-Protocols: flexibility. Fixed sequences of events and marks can be changed (Skip/Added) in a SUIT protocol by the user. Moreover, the text, instructions, concentrations and titration volumes of injections in a specific DL-Protocol can be edited and saved as [[Export_DL-Protocol_User_(*.DLPU)| user-specific DL-Protocol]] [File]\Export\DL-Protocol User (*.DLPU). To enable it, under the 'Protocols' tab in the menu, select the option 'Enable DL-Protocol editing', and then select the plot in which the marks will be set (''e.g.,'' O2 flux per V). Select the 'Overview' window, where you will be able to edit events and marks names, definition/state, final concentration and titration volumes, as well as select a mark as 'multi' for multiple titration steps, skip a mark, or add a new event or mark. After saving, [[Export_DL-Protocol_User_(*.DLPU)|export a DL-Protocol User (DLPU)]] and load it before running the next experiments. If users of DatLab versions older than DatLab 7.4 wish to alter the nature of the chemicals used or the sequence of injections, we ask them to [https://www.oroboros.at/index.php/o2k-technical-support/ contact the O2k-Technical Support].</br></br>For more information:</br>[[Image:PlayVideo.jpg|50px|link=https://www.youtube.com/watch?v=Vd66dHx-MyI]] [https://www.youtube.com/watch?v=Vd66dHx-MyI Export DL-Protocol User (*.DLPU)]6dHx-MyI Export DL-Protocol User (*.DLPU)])
  • Endergonic  + ('''Endergonic''' transformations or proces'''Endergonic''' transformations or processes can proceed in the forward direction only by coupling to an [[exergonic]] process with a driving force more negative than the positive force of the endergonic process. The backward direction of an endergonic process is exergonic. The distinction between endergonic and [[endothermic]] processes is at the heart of [[ergodynamics]], emphasising the concept of [[exergy]] changes, linked to the performance of [[work]], in contrast to [[enthalpy]] changes, linked to [[heat]] or thermal processes, the latter expression being terminologically linked to ''thermodynamics''.inologically linked to ''thermodynamics''.)
  • Endothermy  + ('''Endothermy''' is the constant regulation of body temperature by metabolic heat production and control of heat exchange with the environment.)
  • Energy saving in research  + ('''Energy saving in research''' must rank '''Energy saving in research''' must rank as a priority of social responsibility — ever since the [[Club of Rome]] published 50 years ago the seminal book on ''The limits to growth'' (1972) [1], and more so today in face of the global threat of climate change and the russian war in aggression against Ukraine.</br></br>Energy saving in research does not and must not clash with quality in research. Application of high-quality and predefined [[MitoPedia: SUIT |experimental protocols]] combined with evaluation of [[Replica |repeatability]] and [[Repetitions |reproducibility]] represents primary strategies for energy saving in research. Publication of irreproducible results — adding to the [[reproducibility crisis]] — is the most wasteful aspect of research in terms of resources including [[energy]] (more properly: [[exergy]]). [[Paywall journalism]] is wasteful in terms of financial resources. Dramatically increasing numbers of scientific publications is a pathway towards waste of energy [2]. </br></br>Besides large-scale strategies on e(n)xergy saving in research — quality versus quantity —, everybody's everyday contributions to energy saving count: to cut greenhouse gas emissions, save biological and geological diversity, and improve equality across societies, gender, continents, and countries.</br></br>Do scientists take responsibility for energy saving? Or does biomedical research merely find excuses? Scientific institutions in academia and industry must implement energy saving strategies to reduce waste according to the European Union's [https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en Energy efficiency directive], and to consume less energy (exergy) by using it more efficiently ([https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-targets_en Energy efficiency targets]).</br></br>Possible — important but much neglected — contributions include:</br>* Re-use materials as a superior strategy than recycling, and reduce application of disposable items.</br>* Reduce waste in cleaning procedures, but do not compromise the [[MiPNet19.03 O2k-cleaning and ISS |quality of cleaning procedures]].</br>* Replace inefficient equipment (e.g. water baths) by efficient electronic [[O2k-Peltier Temperature Control |Peltier temperature control]].</br>* Select conferences that you attend by evaluating their 'green deal' strategy. Combine in a single trip participation in a conference and possibly offered satellite events.</br>* Turn off non-essential equipment; reduce energy-wasting stand-by modes; turn off computer screens and other equipment at the mains when not in use. The monitor consumes over half of the energy used by the average computer. Lower your screen brightness.</br>* Turn off the lights when you do not gain from extra illumination, when you leave the lab during the day or at the end of every day.</br>* Reduce heating of the rooms to 19 °C, cooling of rooms to 25 °C. Apply energy-efficient heating and cooling strategies.</br>* Define your personal energy saving targets at homeoffice and in your workplace.</br>* Contact your energy quality manager, to suggest improvement of infrastructure and guidelines that help you and other members in the team to comply with energy saving targets.team to comply with energy saving targets.)
  • Enthalpy  + ('''Enthalpy''', ''H'' [J], can under condi'''Enthalpy''', ''H'' [J], can under conditions of constant gas pressure neither be destroyed nor created (first law of thermodynamics: d<sub>i</sub>''H''/d''t'' = 0). The distinction between enthalpy and [[internal-energy]] of a system is due to external pressure-volume [[work]] carried out reversibly at constant gas pressure. The enthalpy change of the system, d''H'', at constant pressure, is the internal-energy change, d''U'', minus reversible pressure-volume work,</br> d''H'' = d''U'' - d<sub>''V''</sub>''W''</br>Pressure-volume work, d<sub>''V''</sub>''W'', at constant pressure, is the gas pressure, ''p'' [Pa = J·m<sup>-3</sup>], times change of volume, d''V'' [m<sup>3</sup>],</br> d<sub>''V''</sub>''W'' = -''p''·d''V'' [J]</br>The ''available'' work, d<sub>e</sub>''W'', is distinguished from external total work, d<sub>et</sub>''W'', [1]</br> d<sub>e</sub>''W'' = d<sub>et</sub>''W'' - d<sub>''V''</sub>''W''</br>The change of enthalpy of a system is due to internal and external changes,</br> d''H'' = d<sub>i</sub>''H'' + d<sub>e</sub>''H''</br>Since d<sub>i</sub>''H'' = 0 (first law of thermodynamics), the d''H'' is balanced by exchange of heat, work, and matter, </br> d''H'' = (d<sub>e</sub>''Q'' + d<sub>e</sub>''W'') + d<sub>mat</sub>''H'' ; d''p'' = 0 </br>The exchange of matter is expressed in enthalpy equivalents with respect to a [[reference state]] (formation, f, or combustion, c). The value of d''H'' in an open system, therefore, depends on the arbitrary choice of the reference state. In contrast, the terms in parentheses are the sum of all (total, t) partial energy transformations,</br> d<sub>t</sub>''H'' = (d<sub>e</sub>''Q'' + d<sub>e</sub>''W'')</br>A partial enthalpy change of transformation, d<sub>tr</sub>''H'', is distinguished from the total enthalpy change of all transformations, d<sub>t</sub>''H'', and from the enthalpy change of the system, d''H''. In a closed system, d''H'' = d<sub>t</sub>''H''. The enthalpy change of transformation is the sum of the [[Gibbs energy]] (free energy) change of transformation, d<sub>tr</sub>''G'', and the [[bound energy]] change of transformation at constant temperature and pressure, d<sub>tr</sub>''B'' = ''T''·d''S'',</br> d<sub>tr</sub>''H'' = d<sub>tr</sub>''G'' + d<sub>tr</sub>''B''bound energy]] change of transformation at constant temperature and pressure, d<sub>tr</sub>''B'' = ''T''·d''S'', d<sub>tr</sub>''H'' = d<sub>tr</sub>''G'' + d<sub>tr</sub>''B'')
  • Ethics on publishing  + ('''Ethics on publishing''' follow [https:/'''Ethics on publishing''' follow [https://publicationethics.org/core-practices COPE's guidelines] (or equivalent). A journal's policy on publishing ethics should be clearly visible on its website, and should refer to: (1) Journal policies on authorship and contributorship; (2) How the journal will handle complaints and appeals; (3) Journal policies on conflicts of interest / competing interests; (4) Journal policies on data sharing and reproducibility; (5) Journal's policy on ethical oversight; (6) Journal's policy on intellectual property; and (7) Journal's options for post-publication discussions and corrections.t-publication discussions and corrections.)
  • Ethylene glycol tetraacetic acid  + ('''Ethylene glycol tetraacetic acid''' (EGTA) is a chelator for heavy metals, with high affinity for Ca<sup>2+</sup> but low affinity for Mg<sup>2+</sup>. Sigma E 4378.)
  • Etomoxir  + ('''Etomoxir''' (Eto; 2[6(4-chlorophenoxy)h'''Etomoxir''' (Eto; 2[6(4-chlorophenoxy)hexyl]oxirane-2-carboxylate) is an irreversible inhibitor of [[carnitine palmitoyltransferase I]] (CPT-I) on the outer face of the mitochondrial inner membrane. Eto inhibits [[fatty acid oxidation]] by blocking the formation of acyl carnitines from long-chain fatty acids which require the carnitine shuttle for transport into mitochondria. In contrast to long-chain fatty acids, the transport of short- and medium-chain fatty acids is carnitine-independent.hain fatty acids is carnitine-independent.)
  • Exergonic  + ('''Exergonic''' transformations or process'''Exergonic''' transformations or processes can spontaneously proceed in the forward direction, entailing the irreversible loss of the potential to performe [[work]] (''erg'') with the implication of a positive internal [[entropy production]]. [[Ergodynamic equilibrium]] is obtained when an exergonic (partial) process is compensated by a coupled [[endergonic]] (partial) process, such that the Gibbs energy change of the total transformation is zero. Final [[thermodynamic equilibrium]] is reached when all exergonic processes are exhausted and all [[force]]s are zero. The backward direction of an exergonic process is endergonic. The distinction between exergonic and [[exothermic]] processes is at the heart of [[ergodynamics]], emphasising the concept of [[exergy]] changes, linked to the performance of [[work]], in contrast to [[enthalpy]] changes, linked to [[heat]] or thermal processes, the latter expression being terminologically linked to ''thermo''dynamics.inologically linked to ''thermo''dynamics.)
  • Exergy  + ('''Exergy''' includes external and interna'''Exergy''' includes external and internal [[work]]. Exergy as the external work is defined in the First Law of thermodynamics as a specific form of [[energy]]. Exergy as the dissipated Gibbs or Helmholtz energy is the irreversibly dissipated (internal) loss of the potential of performing work as defined in the Second Law of Thermodynamics. </br></br>Changes of exergy d''G'' plus [[bound energy]] yield the [[enthalpy]] change:</br></br> d''H'' = d''G'' + ''T''∙d''S'' = d''G'' + d''B'' = d''G'' + ''T''∙d''S'' = d''G'' + d''B'')
  • Experimental log - DatLab  + ('''Experimental log''' provides an automat'''Experimental log''' provides an automatically generated experimental protocol with detailed information about the O2k settings and calibrations, the [[Sample - DatLab|Sample]] information and various [[Events - DatLab |Events]]. Time-dependent information can be viewed for a single chamber or both chambers. The filter can be selected for viewing minimum information, intermittent by default, or all information. The experimental log can be viewed and saved as a PDF file by clicking on [Preview].ed as a PDF file by clicking on [Preview].)
  • Export as CSV - DatLab  + ('''Export as CSV''' (*.csv) exports plots and events to a text file for further use in Excel and other programs.)
  • Extensive quantity  + ('''Extensive quantities''' pertain to a to'''Extensive quantities''' pertain to a total system, e.g. [[oxygen flow]]. An extensive quantity increases proportional with system size. The magnitude of an extensive quantity is completely additive for non-interacting subsystems, such as mass or flow expressed per defined system. The magnitude of these quantities depends on the extent or size of the system ([[Cohen 2008 IUPAC Green Book |Cohen et al 2008]]).[[Cohen 2008 IUPAC Green Book |Cohen et al 2008]]).)
  • External flow  + ('''External flows''' across the system boundaries are formally reversible. Their irreversible facet is accounted for internally as transformations in a heterogenous system ([[internal flow]]s, ''I''<sub>i</sub>).)
  • Extinction  + ('''Extinction''' is a synonym for [[absorbance]].)
  • Extrinsic fluorophores  + ('''Extrinsic fluorophores''' are molecules'''Extrinsic fluorophores''' are molecules labelled with a fluorescent dye (as opposed to intrinsic fluorescence or autofluorescence of molecules which does not require such labelling). They are available for a wide range of parameters including ROS (H<sub>2</sub>O<sub>2</sub>, [[Amplex red]]) (HOO<sup>-</sup>, MitoSOX) , mitochondrial membrane potential ([[Safranin]], JC1, [[TMRM]], [[Rhodamine 123]]), Ca<sup>2+</sup> ([[Fura2]], Indo 1, [[Calcium Green]]), pH (Fluorescein, HPTS, SNAFL-1), Mg<sup>2+</sup> ([[Magnesium Green]]) and redox state (roGFP).[[Magnesium Green]]) and redox state (roGFP).)
  • F1000Research  + ('''F1000Research''' is an Open Research pu'''F1000Research''' is an Open Research publishing platform for life scientists, offering immediate publication of articles and other research outputs without editorial bias. All articles benefit from transparent peer review and the inclusion of all source data. It is thus not a preprint server, but posters and slides can be published without author fees. Published posters and slides receive a DOI ([[digital object identifier]]) and become citable after a very basic check by our in-house editors. very basic check by our in-house editors.)
  • FADH2  + ('''FADH2''' and '''FAD''': see [[Flavin adenine dinucleotide]].)
  • FCCP  + ('''FCCP''' (Carbonyl cyanide p-trifluoro-m'''FCCP''' (Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone, C<sub>10</sub>H<sub>5</sub>F<sub>3</sub>N<sub>4</sub>O) is a protonophore or [[uncoupler]]: added at uncoupler concentration U<sub>''c''</sub>; ''c'' is the [[optimum uncoupler concentration]] in titrations to obtain maximum mitochondrial respiration in the [[noncoupled respiration|noncoupled]] state of [[ET capacity]].[[ET capacity]].)
  • Fatty acid oxidation  + ('''Fatty acid oxidation''' is a multi-step'''Fatty acid oxidation''' is a multi-step process by which [[fatty acid]]s are broken down in [[β-oxidation]] to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further electron transfer to CoQ. Whereas NADH is the substrate of CI, FADH<sub>2</sub> is the substrate of [[electron-transferring flavoprotein complex]] (CETF) which is localized on the matrix face of the mtIM, and supplies electrons from FADH<sub>2</sub> to CoQ. Before the ß-oxidation in the mitochondrial matrix, fatty acids (short-chain with 1-6, medium-chain with 7–12, long-chain with >12 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. For the mitochondrial transport of long-chain fatty acids the mtOM-enzyme [[carnitine palmitoyltransferase I]] (CPT-1; considered as a rate-limiting step in FAO) is required which generates an acyl-carnitine intermediate from acyl-CoA and carnitine. In the next step, an integral mtIM protein [[carnitine-acylcarnitine translocase]] (CACT) catalyzes the entrance of acyl-carnitines into the mitochondrial matrix in exchange for free carnitines. In the inner side of the mtIM, another enzyme [[carnitine palmitoyltransferase 2]] (CPT-2) converts the acyl-carnitines to carnitine and acyl-CoAs, which undergo ß-oxidation in the mitochondrial matrix. Short- and medium-chain fatty acids do not require the carnitine shuttle for mitochondrial transport. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]].mitoylcarnitine]].)
  • Fatty acid  + ('''Fatty acids''' are carboxylic acids wit'''Fatty acids''' are carboxylic acids with a carbon aliphatic chain. The fatty acids can be divided by the length of this chain, being considered as short-chain (1–6 carbons), medium-chain (7–12 carbons) and long-chain and very long-chain fatty acids (>12 carbons).</br>Long-chain fatty acids must be bound to [[Carnitine|carnitine]] to enter the mitochondrial matrix, in a reaction that can be catalysed by [[Carnitine acyltransferase|carnitine acyltransferase]]. For this reason, long-chain fatty acids, such as [[Palmitate|palmitate]] (16 carbons) is frequently supplied to mt-preparations in the activated form of [[Palmitoylcarnitine|palmitoylcarnitine]].</br>Fatty acids with shorter chains, as [[Octanoate|octanoate]] (8 carbons) may enter the mitochondrial matrix, however, in HRR they are more frequently supplied also in the activated form, such as [[Octanoylcarnitine|octanoylcarnitine]].</br></br>Once in the mitochondrial matrix, the [[Fatty acid oxidation|fatty acid oxidation]] (FAO) occurs, generating acetyl-CoA, NADH and FADH2. In the [[Fatty acid oxidation pathway control state|fatty acid oxidation pathway control state]] electrons are fed into the [[F-junction]] involving the [[electron transferring flavoprotein]] (CETF). FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]].tty acid oxidation pathway control state |F-pathway]].)
  • Fermentation  + ('''Fermentation''' is the process of [[energy metabolism]]'''Fermentation''' is the process of [[energy metabolism]] used to supply ATP, where redox balance is maintained with internally produced electron acceptors (such as pyruvate or fumarate), without the use of external electron acceptors (such as O<sub>2</sub>). Fermentation thus contrasts with [[cell respiration]] and is an [[anaerobic]] process, but aerobic fermentation may proceed in the presence of oxygen.ic fermentation may proceed in the presence of oxygen.)
  • File search - DatLab  + ('''File search''' yields a list of all fil'''File search''' yields a list of all files labelled by the experimental code in a selected directory . Click on the file to preview the experimental log. With '''File Search''' you can search in all folders and subfolders on your computer for DatLab files with a selected experimental code. The experimental code is entered in the DatLab file in the window "Experiment" ([F3]). When you click on a folder and press the button search, the DatLab file names will appear on the right window. Click on a DatLab file and further information (e.g. Sample information, Background information) will appear in the window below.ormation) will appear in the window below.)
  • Filters  + ('''Filters''' are materials that have wave'''Filters''' are materials that have wavelength-dependent transmission characteristics. They are can be used to select the wavelength range of the light emerging from a [[light source]], or the range entering the [[detector]], having passed through the sample. In particular they are used in [[fluorometry]] to exclude wavelengths greater than the excitation wavelength from reaching the sample, preventing absorption interfering with the emitted [[fluorescence]]. Standard '''filters''' can also be used for calibrating purposes.can also be used for calibrating purposes.)
  • Flavin adenine dinucleotide  + ('''Flavin adenine dinucleotide''', FAD and'''Flavin adenine dinucleotide''', FAD and FADH<sub>2</sub>, is an oxidation-reduction [[prosthetic group]] (redox cofactor; compare [[NADH]]). FMN and FAD are the prosthetic groups of flavoproteins (flavin dehydrogenases). [[Electron-transfer-pathway state |Type F substrates]] (fatty acids) generate FADH<sub>2</sub>, the substrate of [[electron transferring flavoprotein]] (CETF). Thus FADH<sub>2</sub> forms a junction or funnel of electron transfer to CETF, the [[F-junction]] (compare [[N-junction]], [[Q-junction]]), in the [[F-pathway control state]]. In contrast, FADH<sub>2</sub> is not the substrate but the internal product of [[succinate dehydrogenase]] (CII). FAD is the oxidized (quinone) form, which is reduced to FADH<sub>2</sub> (hydroquinone form) by accepting two electrons and two protons.educed to FADH<sub>2</sub> (hydroquinone form) by accepting two electrons and two protons.)
  • Flavonoids  + ('''Flavonoids''' are a group of bioactive '''Flavonoids''' are a group of bioactive polyphenols with potential antioxidant and anti-inflammatory effects, abundant in fruits and vegetables, and in some medicinal herbs. Flavonoids are synthesized in plants from phenylalanine. Dietary intake of flavonoids as nutraceuticals is discussed for targeting T2D and other degenerative diseases.eting T2D and other degenerative diseases.)
  • Fluorescence  + ('''Fluorescence''' is the name given to li'''Fluorescence''' is the name given to light emitted by a substance when it is illuminated (excited) by light at a shorter wavelength. The [[incident light]] causes an electron transition to a higher energy band in the molecules. The electron then spontaneously returns to its original energy state emitting a photon. The intensity of the emitted light is proportional to the concentration of the substance. Fluorescence is one form of [[Luminescence]], especially Photoluminescence.[[Luminescence]], especially Photoluminescence.)
  • Fluorometry  + ('''Fluorometry''' (or [[fluorimetry]]) is the general term given to the method of measuring the fluorescent emission of a substance following excitation by light at a shorter wavelength.)
  • Flux / Slope  + ('''Flux / Slope''' is the time derivative '''Flux / Slope''' is the time derivative of the signal. In [[DatLab]], Flux / Slope is the name of the pull-down menu for (1) normalization of flux (chamber volume-specific flux, sample-specific flux or flow, or flux control ratios), (2) [[flux baseline correction]], (3) [[Instrumental background oxygen flux]], and (4) [[flux smoothing]], selection of the [[scaling factor]], and stoichiometric normalization using a stoichiometric coefficient.</br>Before changing the normalization of flux from volume-specific flux to sample-specific flux or flow, or flux control ratios, please be sure to use the standard Layout 04a (Flux per volume) or 04b (Flux per volume overlay). When starting with the instrumental standard Layouts 1-3, which display the O2 slope negative, the sample-specific flux or flow, or flux control ratios will not be automatically background corrected. To obtain the background corrected specific flux or flux control ratios, it is needed to tick the background correction in the lower part of the slope configuration window. Background correction is especially critical when performing measurements in a high oxygen regime or using samples with a low respiratory flux or flow.mples with a low respiratory flux or flow.)
  • Flux baseline correction  + ('''Flux baseline correction''' provides th'''Flux baseline correction''' provides the option to display the plot and all values of the [[flux]] (or [[flow]], or [[flux control ratio]]) as the total flux, ''J'', minus a baseline flux, ''J''<sub>0</sub>.</br> ''J<sub>V</sub>''(bc) = ''J<sub>V</sub>'' - ''J<sub>V</sub>''<sub>0</sub></br> ''J<sub>V</sub>'' = (d''c''/d''t'') · ''ν''<sup>-1</sup> · ''SF'' - ''J°<sub>V</sub>''</br>For the oxygen channel, ''J<sub>V</sub>'' is O2 flux per volume [pmol/(s·ml)] (or volume-specific O<sub>2</sub> flux), ''c'' is the oxygen concentration [nmol/ml = µmol/l = µM], d''c''/d''t'' is the (positive) slope of oxygen concentration over time [nmol/(s · ml)], ''ν''<sup>-1</sup> = -1 is the stoichiometric coefficient for the reaction of oxygen consumption (oxygen is removed in the chemical reaction, thus the stoichiometric coefficient is negative, expressing oxygen flux as the negative slope), ''SF''=1,000 is the scaling factor (converting units for the amount of oxygen from nmol to pmol), and ''J°<sub>V</sub>'' is the volume-specific background oxygen flux ([[Instrumental background oxygen flux]]). ''Further details'': [[Flux / Slope]].lope]].)
  • Flux control efficiency  + ('''Flux control efficiencies''' express th'''Flux control efficiencies''' express the control of respiration by a [[metabolic control variable]], ''X'', as a fractional change of flux from ''Y<sub>X</sub>'' to ''Z<sub>X</sub>'', normalized for ''Z<sub>X</sub>''. ''Z<sub>X</sub>'' is the [[reference state]] with high (stimulated or un-inhibited) flux; ''Y<sub>X</sub>'' is the [[background state]] at low flux, upon which ''X'' acts.</br></br>:: ''j<sub>Z-Y</sub>'' = (''Z<sub>X</sub>-Y<sub>X</sub>'')/''Z<sub>X</sub>'' = 1-''Y<sub>X</sub>''/''Z<sub>X</sub>''</br></br>Complementary to the concept of [[flux control ratio]]s and analogous to [[elasticity|elasticities]] of [[metabolic control analysis]], the flux control efficiency of ''X'' upon background ''Y<sub>X</sub>'' is expressed as the change of flux from ''Y<sub>X</sub>'' to ''Z<sub>X</sub>'' normalized for the reference state ''Z<sub>X</sub>''.</br>» [[Flux_control_efficiency#Flux_control_efficiency:_normalization_of_mitochondrial_respiration | '''MiPNet article''']][Flux_control_efficiency#Flux_control_efficiency:_normalization_of_mitochondrial_respiration | '''MiPNet article''']])
  • Flux control ratio  + ('''Flux control ratios''' ''FCR''s are rat'''Flux control ratios''' ''FCR''s are ratios of oxygen flux in different respiratory control states, normalized for maximum flux in a common reference state, to obtain theoretical lower and upper limits of 0.0 and 1.0 (0 % and 100 %). </br></br>For a given protocol or set of respiratory protocols, flux control ratios provide a fingerprint of coupling and substrate control independent of (''1'') mt-content in cells or tissues, (''2'') purification in preparations of isolated mitochondria, and (''3'') assay conditions for determination of tissue mass or mt-markers external to a respiratory protocol (CS, protein, stereology, etc.). ''FCR'' obtained from a single respirometric incubation with sequential titrations (sequential protocol; [[SUIT|SUIT protocol]]) provide an internal normalization, expressing respiratory control independent of mitochondrial content and thus independent of a marker for mitochondrial amount. ''FCR'' obtained from separate (parallel) protocols depend on equal distribution of subsamples obtained from a homogenous mt-preparation or determination of a common [[mitochondrial marker]].[[mitochondrial marker]].)
  • Flux  + ('''Flux''', ''J'', is a [[specific quantity]]'''Flux''', ''J'', is a [[specific quantity]]. Flux is [[flow]], ''I'' [MU·s<sup>-1</sup> per system] (an [[extensive quantity]]), divided by system size. Flux (''e.g.'', [[oxygen flux]]) may be volume-specific (flow per volume [MU·s<sup>-1</sup>·L<sup>-1</sup>]), mass-specific (flow per mass [MU·s<sup>-1</sup>·kg<sup>-1</sup>]), or marker-specific (e.g. flow per mtEU). The [[motive unit]] [MU] of chemical flow or flux is the advancement of reaction [mol] in the chemical format.ive unit]] [MU] of chemical flow or flux is the advancement of reaction [mol] in the chemical format.)
  • Force  + ('''Force''' is an [[intensive quantity]]'''Force''' is an [[intensive quantity]]. The product of force times [[advancement]] is the [[work]] (exergy) expended in a process or transformation. Force times flow is [[power]] [W].</br># The '''fundamental forces''' '''''F''''' of physics are the gravitational, electroweak (combining electromagnetic and weak nuclear) and strong nuclear forces. These gradient-forces are vectors with spatial direction interacting with the motive particle ''X'', d<sub>'''m'''</sub>'''''F'''''<sub>''X''</sub> [N ≡ J∙m<sup>-1</sup> = m∙kg∙s<sup>-2</sup>]. These forces describe the interaction between particles as [[vector]]s with direction of a [[gradient]] in space, causing a change in the motion ([[acceleration]]) of the particles in the spatial direction of the force. The force acts at a distance, and the distance covered is the advancement. If a force is counteracted by another force of equal magnitude but opposite direction, the accelerating effects of the two forces are balanced such that the velocity of the particle does not change and no work is done beyond the interaction between the two counteracting forces. The total net force is partitioned into ''partial'' forces, and the counteracting force may be called ''resistance''. If the resistance is entirely due to frictional effects, then no work is done and the exergy is completely dissipated.</br># '''Isomorphic forces''' can be derived from (''1'') the fundamental forces or (''2'') statistical distributions if large numbers of particles are involved. The isomorphic forces are known as 'generalized' forces of nonequilibrium thermodynamics. An isomorphic '''motive force''', Δ<sub>tr</sub>''F''<sub>''X''</sub>, in thermodynamics or ergodynamics is the partial Gibbs (Helmholtz) energy change per advancement of a transformation (tr). </br>## In [[continuous system]]s accessible to the analysis of gradients, the '''motive vector forces''', d<sub>'''m'''</sub>'''''F'''''<sub>''X''</sub> (units: newton per amount of particles ''X'' [N∙mol<sup>-1</sup>] or per coulombs of particles [N∙C<sup>-1</sup>]), are vectors interacting with the motive particles ''X''.</br>## In [[discontinuous system]]s that consist of compartments separated by a semipermeable membrane, the '''compartmental motive forces''' are stoichiometric potential differences (∆) across a boundary of zero thickness, distinguished as isomorphic motive forces, ∆<sub>tr</sub>''F''<sub>''X''</sub>, with compartmental instead of spatial direction of the energy transformation, tr. The motive forces are expressed in various [[motive unit]]s, MU [J∙MU<sup>-1</sup>], depending on the energy transformation under study and on the unit chosen to express the motive entity ''X'' and advancement of the process. For the protonmotive force the proton is the motive entity, which can be expressed in a variety of formats with different MU (coulomb, mole, or particle).ntity ''X'' and advancement of the process. For the protonmotive force the proton is the motive entity, which can be expressed in a variety of formats with different MU (coulomb, mole, or particle).)
  • Free activity  + ('''Free activity''' ''α<sub>X</su'''Free activity''' ''α<sub>X</sub>'' [MU·m<sup>-3</sup>] is [[pressure]] divided by isomorphic [[force]]. In the chemical [[amount]] format, ''α<sub>X</sub>'' is expressed in units of concentration of ''X'' [mol·L<sup>-1</sup>]. ''α<sub>X</sub>'' is the local concentration in a concentration gradient. If the concentration gradient is collapsed to a boundary of zero thickness in a compartmental system, ''α<sub>X</sub>'' reflects the singularity in the transition between the two phases or compartments., ''α<sub>X</sub>'' reflects the singularity in the transition between the two phases or compartments.)
  • Fumarase  + ('''Fumarase''' or fumarate hydratase (FH) is an enzyme of the [[tricarboxylic acid cycle]] catalyzing the equilibrium reaction between [[fumarate]] and [[malate]]. Fumarase is found not only in mitochondria, but also in the cytoplasm of all eukaryotes.)
  • Fura2  + ('''Fura2''' is a ratiometric fluorescence '''Fura2''' is a ratiometric fluorescence probe for the measurement of calcium. Its derivative Fura-2-acetoxymethyl ester (Fura2-AM) is membrane permable and can thus be used to measure intracellular free calcium concentration (Grynkiewicz et al., 1985). For this purpose, cells are incubated with Fura2-AM, which crosses the cell membrane by diffusion and is cleaved into free Fura2 and acetoxymethyl groups by cellular esterases. Intracellular free calcium is measured by exciting the dye at 340 nm and 380 nm, which are the excitation optima of calcium-bound and free Fura2, respectively, and emission detection above 500 nm. Through the ratiometric detection unequal distribution of the dye within the cell and other potential disturbances are largely cancelled out, making this a widely used and relatively reliable tool for calcium measurements.ly reliable tool for calcium measurements.)
  • Gibbs energy  + ('''Gibbs energy''' ''G'' [J] is [[exergy]]'''Gibbs energy''' ''G'' [J] is [[exergy]] which cannot be created internally (subscript i), but in contrast to [[internal-energy]] (d<sub>i</sub>''U''/d''t'' = 0) is not conserved but is dissipated (d<sub>i</sub>''G''/d''t'' < 0) in irreversible energy transformations at constant temperature and (barometric) pressure, ''T'',''p''. Exergy is available as [[work]] in reversible energy transformations (100 % [[efficiency]]), and can be partially conserved when the [[exergonic]] transformation is coupled to an [[endergonic]] transformation.[[endergonic]] transformation.)
  • Glucose  + ('''Glucose''', also known as D-glucose or dextrose, is a monosaccharide and an important carbohydrate in biology. Cells use it as the primary source of energy and a metabolic intermediate.)
  • Glutamate dehydrogenase  + ('''Glutamate dehydrogenase''', located in '''Glutamate dehydrogenase''', located in the mitochondrial matrix (mtGDH), is an enzyme that converts [[glutamate]] to α-ketoglutarate [http://en.wikipedia.org/wiki/Glutamate_dehydrogenase]. mtGDH is not part of the TCA cycle, but is involved in [[glutaminolysis]] as an [[anaplerosis |anaplerotic reaction]].[anaplerosis |anaplerotic reaction]].)
  • Glycerophosphate dehydrogenase Complex  + ('''Glycerophosphate dehydrogenase complex''''Glycerophosphate dehydrogenase complex''' (CGpDH) is a Complex of the electron transfer-pathway localized at the outer face of the mt-inner membrane. CGpDH is thus distinguished from cytosolic GpDH. CGpDH oxidizes [[glycerophosphate]] to dihydroxyacetone phosphate and feeds two electrons into the [[Q-junction]], thus linked to an [[Electron-transfer-pathway state|ET pathway level 3 control state]].[[Electron-transfer-pathway state|ET pathway level 3 control state]].)
  • Glycerophosphate  + ('''Glycerophosphate''' (synonym: α-glycero'''Glycerophosphate''' (synonym: α-glycerophosphate; glycerol-3-phosphate; C<sub>3</sub>H<sub>9</sub>O<sub>6</sub>P) is an organophosphate and it is a component of glycerophospholipids. The mitochondrial [[Glycerophosphate dehydrogenase Complex]] oxidizes glycerophosphate to dihydroxyacetone phosphate and feeds electrons directly to ubiquinone.hate to dihydroxyacetone phosphate and feeds electrons directly to ubiquinone.)
  • H2DCFDA  + ('''H2DCFDA''' (dichlorodihydrofluorescein '''H2DCFDA''' (dichlorodihydrofluorescein diacetate) is a cell permeant fluorescent probe that has been used as an indicator of ROS presence. It is a reduced form of fluorescein that does not present fluorescence. After entry in the cell, it suffers deacetylation by intracellular esterases, and upon oxidation it is converted to dichlorofluorescein (excitation wavelength ~492–495 nm, emission ~517–527 nm). It may be oxidised by hydrogen peroxide, hydroxyl radical, hypochlorite anion, nitric oxide, peroxyl radical, peroxynitrite, singlet oxygen and superoxide. Has been used as a general indicator of ROS by fluorescence microscopy.dicator of ROS by fluorescence microscopy.)
  • Harmonization  + ('''Harmonization''' is the process of minimizing redundant or conflicting [[standard]]s which may have evolved independently. To obtain a common basis in reaching a defined objective, critical [[requirement]]s are identified that need to be retained.)
  • Harmonized European norm  + ('''Harmonized European norms''' are [[norm]]s valid for all members of the European Union. They are mandatory parts of the individual national collections of norms.)
  • Harmonized SUIT protocols  + ('''Harmonized [[SUIT protocols]]'''Harmonized [[SUIT protocols]]''' (H-SUIT) are designed to include [[cross-linked respiratory states]]. When performing harmonized SUIT protocols in parallel, measurements of cross-linked respiratory states can be statistically evaluated as replicates across protocols. Additional information is obtained on respiratory coupling and substrate control by including respiratory states that are not common (not cross-linked) across the harmonized protocols.s-linked) across the harmonized protocols.)
  • Healthy ageing  + ('''Healthy ageing''': 'WHO has released th'''Healthy ageing''': 'WHO has released the first World report on ageing and health, reviewing current knowledge and gaps and providing a public health framework for action. The report is built around a redefinition of healthy ageing that centres on the notion of functional ability: the combination of the intrinsic capacity of the individual, relevant environmental characteristics, and the interactions between the individual and these characteristics' (Beard 2016 The Lancet). characteristics' (Beard 2016 The Lancet).)
  • Heat  + ('''Heat''' is a form of [[energy]]'''Heat''' is a form of [[energy]] [J]. The relationship between heat and [[work]] provides the foundation of thermodynamics, which describes transformations from an initial to a final state of a system. In energy transformations heat may pass through the boundary of the system, at an external heat flow of d<sub>e</sub>''Q''/d''t''.al heat flow of d<sub>e</sub>''Q''/d''t''.)
  • Heterothermy  + ('''Heterothermy''' is the variable regulat'''Heterothermy''' is the variable regulation of body temperature in [[endothermy | endotherms]] which can change their body temperatures as levels of activity and environmental conditions dictate (e.g. hibernators). In '''regional heterothermy''', temperature gradients are present, e.g. between body core and extremeties.t, e.g. between body core and extremeties.)
  • Homeothermy  + ('''Homeothermy''' is the stable regulation of body temperature in [[endothermy | endotherms]] by metabolic heat production and control of heat exchange with the environment, or in [[ectotherms]] by behavioural means to select a stable thermal environment.)
  • Horseradish peroxidase  + ('''Horseradish peroxidase''' readily combines with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and the resultant [HRP-H<sub>2</sub>O<sub>2</sub>] complex can oxidize a wide variety of hydrogen donors.)
  • Hydrogen sulfide  + ('''Hydrogen sulfide (H<sub>2</sub>S)''' is involved in signaling and may have have further biological importance.)
  • Hydron  + ('''Hydron''' is the general name for the cation H<sup>+</sup> used without regard to the nuclear mass of the hydrogen entity (H is the hydro group), either for H in its natural abundance or without distinction between the isotopes.)
  • Hydroxycinnamate  + ('''Hydroxycinnamate''' (alpha-cyano-4-hydr'''Hydroxycinnamate''' (alpha-cyano-4-hydroxycinnamic acid) is an inhibitor of the [[pyruvate carrier]] (0.65 mM). Above 10 mM [[pyruvate]], hydroxycinnamate cannot inhibit respiration from pyruvate, since the weak pyruvic acid can pass the inner mt-membrane in non-dissociated form.inner mt-membrane in non-dissociated form.)
  • Hydroxylamine  + ('''Hydroxylamine''' is an inhibitor of [[catalase]].)
  • Hyperoxia  + ('''Hyperoxia''' is defined as environmenta'''Hyperoxia''' is defined as environmental oxygen pressure above the [[normoxic]] reference level. Cellular and intracellular hyperoxia is imposed on isolated cells and isolated mitochondria at air-level oxygen pressures which are higher compared to cellular and intracellular oxygen pressures under tissue conditions in vivo. Hyperoxic conditions may impose oxidative stress and may increase maximum aerobic performance. may increase maximum aerobic performance.)
  • Hyperthermia  + ('''Hyperthermia''' in [[endothermy | endotherms]]'''Hyperthermia''' in [[endothermy | endotherms]] is a state of stressful up to lethal elevated body core temperature. In humans, the limit of hyperthermia (fever) is considered as >38.3 °C, compared to [[normothermia]] at a body temperature of 36.5 to 37.5 °C.[normothermia]] at a body temperature of 36.5 to 37.5 °C.)
  • Hyphenation  + ('''Hyphenation''' is used to connect two w'''Hyphenation''' is used to connect two words (compound words) or two parts of a word to clarify the meaning of a sentence. The same two words may be hyphenated or not depending on context. Hyphenation may present a problem when searching for a term such as '[[Steady state]]'. It is helpful to write 'steady-state measurement', to clarify that the measurement is performed at steady state, rather than implying that a state measurement is steady. But this does not imply that hyphenation is applied to the 'measurement performed at steady state'. Thus, the key word is '[[steady state]]'. Compound adjectives should be hyphenated (steady-state measurement), but if the compound adjective follows the term (measurement at steady state), hyphenation does not add any information and should be avoided. Find more examples and guidelines in the [https://www.grammarly.com/blog/hyphen/ grammarly blog on Hyphen] and in [https://apastyle.apa.org/learn/faqs/when-use-hyphen apastyle.apa.org].rn/faqs/when-use-hyphen apastyle.apa.org].)
  • Hypothermia  + ('''Hypothermia''' in [[endothermy | endotherms]]'''Hypothermia''' in [[endothermy | endotherms]] is a state of stressful up to lethal low body core temperature. In humans, the limit of hypothermia is considered as 35 °C, compared to [[normothermia]] at a body temperature of 36.5 to 37.5 °C. Hypothermia is classified as mild (32–35 °C), moderate (28–32 °C), severe (20–28 °C), and profound (<20 °C). severe (20–28 °C), and profound (<20 °C).)
  • Hypoxia  + ('''Hypoxia''' (hypox) is defined in respir'''Hypoxia''' (hypox) is defined in respiratory physiology as the state when insufficient O<sub>2</sub> is available for respiration, compared to ''environmental'' hypoxia defined as environmental oxygen pressures below the [[normoxic]] reference level. Three major categories of hypoxia are (''1'') environmental hypoxia, (''2'') physiological tissue hypoxia in hyperactivated states (e.g. at ''V''<sub>O<sub>2</sub>max</sub>) with intracellular oxygen demand/supply balance at steady state in tissues at environmental normoxia, compared to tissue normoxia in physiologically balanced states, and (''3'') pathological tissue hypoxia including ischemia and stroke, anaemia, chronic heart disease, chronic obstructive pulmonary disease, severe COVID-19, and obstructive sleep apnea. Pathological hypoxia leads to tissue hypoxia and heterogenous intracellular anoxia. Clinical oxygen treatment ('environmental hyperoxia') may not or only partially overcome pathological tissue hypoxia.al hyperoxia') may not or only partially overcome pathological tissue hypoxia.)
  • ISO 10012:2003 Measurement management systems  + ('''ISO 10012:2003 Measurement management s'''ISO 10012:2003 Measurement management systems — Requirements for measurement processes and measuring equipment''': An effective measurement management system ensures that measuring equipment and measurement processes are fit for their intended use and is important in achieving product quality objectives and managing the risk of incorrect measurement results. The objective of a measurement management system is to manage the risk that measuring equipment and measurement processes could produce incorrect results affecting the quality of an organization’s product. The methods used for the measurement management system range from basic equipment verification to the application of statistical techniques in the measurement process control.niques in the measurement process control.)
  • ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison  + ('''ISO 13528:2015 Statistical methods for '''ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison''': Proficiency testing involves the use of interlaboratory comparisons to determine the performance of participants (which may be laboratories, inspection bodies, or individuals) for specific tests or measurements, and to monitor their continuing performance. There are a number of typical purposes of proficiency testing [[ISO/IEC 17043 General requirements for proficiency testing |ISO/IEC 17043:2010]]. These include the evaluation of laboratory performance, the identification of problems in laboratories, establishing effectiveness and comparability of test or measurement methods, the provision of additional confidence to laboratory customers, validation of uncertainty claims, and the education of participating laboratories. The statistical design and analytical techniques applied must be appropriate for the stated purpose(s). be appropriate for the stated purpose(s).)
  • ISO 15189:2012 Medical laboratories — Particular requirements for quality and competence  + ('''ISO 15189:2012 Medical laboratories — P'''ISO 15189:2012 Medical laboratories — Particular requirements for quality and competence''': This International Standard is for use by medical laboratories in developing their quality management systems and assessing their own competence, and for use by accreditation bodies in confirming or recognising the competence of medical laboratories. While this International Standard is intended for use throughout the currently recognised disciplines of medical laboratory services, those working in other services and disciplines could also find it useful and appropriate.could also find it useful and appropriate.)
  • ISO 17511:2003 In vitro diagnostic medical devices  + ('''ISO 17511:2003 In vitro diagnostic medi'''ISO 17511:2003 In vitro diagnostic medical devices -- Measurement of quantities in biological samples -- Metrological traceability of values assigned to calibrators and control materials''': For measurements of quantities in laboratory medicine, it is essential that the quantity is adequately defined and that the results reported to the physicians or other health care personel and patients are adequately accurate (true and precise) to allow correct medical interpretation and comparability over time and space.ion and comparability over time and space.)
  • ISO 9001:2015 Quality management systems - requirements  + ('''ISO 9001:2015 Quality management system'''ISO 9001:2015 Quality management systems - requirements''': The adoption of a quality management system is a strategic decision for an organization that can help to improve its overall performance and provide a sound basis for sustainable development initiatives. Consistently meeting requirements and addressing future needs and expectations poses a challenge for organizations in an increasingly dynamic and complex environment. To achieve this objective, the organization might find it necessary to adopt various forms of improvement in addition to correction and continual improvement, such as breakthrough change, innovation and re-organization.gh change, innovation and re-organization.)
  • ISO/IEC 17025:2005 Competence of testing and calibration laboratories  + ('''ISO/IEC 17025:2005 General requirements'''ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories''': The use of this International Standard will facilitate cooperation between laboratories and other bodies, and assist in the exchange of information and experience, and in the harmonization of standards and procedures. This International Standard specifies the general requirements for the competence to carry out tests and/or calibrations, including sampling. It covers testing and calibration performed using standard methods, non-standard methods, and laboratory-developed methods.methods, and laboratory-developed methods.)
  • ISO/IEC 17043:2010 General requirements for proficiency testing  + ('''ISO/IEC 17043:2010 Conformity assessmen'''ISO/IEC 17043:2010 Conformity assessment — General requirements for proficiency testing''': The use of interlaboratory comparisons is increasing internationally. This International Standard provides a consistent basis to determine the competence of organizations that provide proficiency testing.izations that provide proficiency testing.)
  • Iconic symbols  + ('''Iconic symbols''' are used in [[ergodynamics]]'''Iconic symbols''' are used in [[ergodynamics]] to indicate more explicitely — compared to standard SI or IUPAC symbols — the quantity represented and some boundary conditions. This is particularly the case in normalized quantities (ratios of quantities). Iconic (or canonical) symbols help to clarify the meaning, are based on SI and IUPAC symbols as far as possible, and may be translated into more commonly used, practical symbols. Several ambiguities in SI and IUPAC symbols are eliminated by the systematic structure of iconic symbols, but it may be impossible to avoid all ambiguities, particulary when long (canonical) symbols are abbreviated in a particular context. Clarity is improved always by showing the unit of a quantity together with the symbol of the quantity. Iconic symbols cannot be identical with IUPAC symbols when a different definition is used — this would add to the confusion. For example, the IUPAC symbols ''n''<sub>B</sub> [mol] and ''V''<sub>B</sub> [m<sup>3</sup>] denote amount and volume of B. Consequently, it should be expected, that the symbol ''Q''<sub>B</sub> indicates charge of B [C]. However, the IUPAC symbol ''Q''<sub>B</sub> is used for particle charge per ion B [C·x<sup>-1</sup>]. This prohibits a consistent definition of ''Q''<sub>B</sub> as a potential iconic symbol for charge carried by a given quantity of ions B with unit [C], instead of particle charge per ion B with unit [C·x<sup>-1</sup>]. Hence, the conventional ambigous system forces compatible iconic symbols to be more complicated, using ''Q''<sub>elB</sub> [C] and ''Q''<sub>''<u>N</u>''B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.'B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.)
  • Impact factor  + ('''Impact factor''' is a measure of a scie'''Impact factor''' is a measure of a scientific journal's citations per publication. The Journal Citation Reports, maintained by Clarivate Analytics, provides the calculated impact factors. The IF is frequently used as an indicator of a journal's importance or prestige, which is nowadays increasingly contested. which is nowadays increasingly contested.)
  • Inorganic phosphate  + ('''Inorgnic phosphate''' (P<sub>i</sub>) is a salt of phosphoric acid. In solution near physiological pH, the species HPO<sub>4</sub><sup>2-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> dominate. ''See also'': [[Phosphate carrier]] (Pic).)
  • Oxygen flux - instrumental background  + ('''Instrumental background oxygen flux''','''Instrumental background oxygen flux''', ''J''°<sub>O<sub>2</sub></sub>, in a respirometer is due to oxygen consumption by the [[POS]], and oxygen diffusion into or out of the aqueous medium in the [[O2k-chamber]]. It is a property of the instrumental system, measured in the range of experimental oxygen levels by a standardized instrumental O<sub>2</sub> background test. The oxygen regime from air saturation towards zero oxygen is applied generally in experiments with isolated mitochondria, and living or permeabilized cells. To overcome oxygen diffusion limitation in permeabilized fibers and homogenates, an elevated oxygen regime is applied, requiring instrumental background test in the same range of elevated oxygen., requiring instrumental background test in the same range of elevated oxygen.)
  • Integration time  + ('''Integration time''' is the time taken t'''Integration time''' is the time taken to scan a single full range spectrum using [[photodiode arrays]]. It is equivalent to the exposure time for a camera. The shortest integration time defines the fastest response time of a [[spectrophotometer]]. Increasing the integration time increases the [[sensitivity]] of the device. The [[white balance]] or [[balance]] and subsequent measurements must always be carried out at the same integration time. carried out at the same integration time.)
  • Internal-energy  + ('''Internal-energy''', ''U'' [J], can neit'''Internal-energy''', ''U'' [J], can neither be destroyed nor created (first law of thermodynamics: d<sub>i</sub>''U''/d''t'' = 0). Note that ''internal'' (subscript i), as opposed to ''external'' (subscript e), must be distinguished from "internal-energy", ''U'', which contrasts with "[[Helmholtz energy]]", ''A'', as [[enthalpy]], ''H'', contrasts with Gibbs energy, ''G''.[[enthalpy]], ''H'', contrasts with Gibbs energy, ''G''.)
  • Ionomycin  + ('''Ionomycin''' (Imy) is a ionophore used to raise intracellular [Ca<sup>2+</sup>].)
  • Isocitrate dehydrogenase  + ('''Isocitrate dehydrogenase''' forms 2-oxoglutarate from isocitrate in the [[TCA cycle]].)
  • Isolated mitochondria  + ('''Isolated mitochondria''', imt, are mitochondria separated from a tissue or cells by breaking the plasma membranes and attachments to the cytoskeleton, followed by centrifugation steps to separate the mitochondria from other components.)
  • Journal indexing  + ('''Journal indexing''' allows publications to be found on search tools/databases. Each database might have different criteria of inclusion.)
  • Keywords-MitoPedia in BEC  + ('''Keywords—MitoPedia''' is the concept to'''Keywords—MitoPedia''' is the concept to link keywords in articles published in [[Bioenergetics Communications]] (BEC) to [[MitoPedia]] terms. Authors should consider the message in the selected keywords. Provide consistent definitions of your keywords by linking them to MitoPedia. Extend MitoPedia entries critically by your contributions. The BEC editorial team will hyperlink your keywords with MitoPedia, and a reference to your BEC publication will be generated automatically from the MitoPedia term to your publication. With your contributions, BEC elevates keywords to terms with meaning. Your article gains visibility.th meaning. Your article gains visibility.)
  • Kynurenine hydroxylase  + ('''Kynurenine hydroxylase''' (kynurenine 3'''Kynurenine hydroxylase''' (kynurenine 3-monooxygenase) is located in the outer mitochondrial membrane. Kynurenine hydroxylase catalyzes the chemical reaction: L-kynurenine + NADPH + H<sup>+</sup> + O<sub>2</sub> ↔ 3-hydroxy-L-kynurenine + NADP<sup>+</sup> + H<sub>2</sub>O</br>Kynurenine hydroxylase belongs to the family of oxidoreductases acting on paired donors, with O<sub>2</sub> as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O<sub>2</sub> with [[NADH]] or [[NADPH]] as one donor, and incorporation of one atom of oxygen into the other donor. This enzyme participates in tryptophan metabolism. It employs one cofactor, [[FAD]].FAD]].)
  • Laboratory titration sheet  + ('''Laboratory titration sheet''' contains '''Laboratory titration sheet''' contains the sequential titrations in a specific Substrate-uncoupler-inhibitor titration (SUIT) protocol. The laboratory titration sheets for different SUIT protocols are incorporated in DatLab (DL7.1): [[Protocols in DatLab]][[Protocols in DatLab]])
  • Lactate dehydrogenase  + ('''Lactate dehydrogenase''' is a glycolytic marker enzyme in the cytosol, regenerating NAD<sup>+</sup> from NADH and pyruvate, forming lactate.)
  • Length  + ('''Length''' ''l'' is an SI base quantity '''Length''' ''l'' is an SI base quantity with SI base unit [[meter]] m. Quantities derived from length are [[area]] ''A'' [m<sup>2</sup>] and [[volume]] ''V'' [m<sup>3</sup>]. Length is an extensive quantity, increasing additively with the number of objects. The term 'height' ''h'' is used for length in cases of vertical position (see [[height of humans]]). Length of height per object, ''L''<sub>''U''<sub>''X''</sub></sub> [m·x<sup>-1</sup>] is length per unit-entity ''U''<sub>''X''</sub>, in contrast to lentgth of a system, which may contain one or many entities, such as the length of a pipeline assembled from a number ''N''<sub>''X''</sub> of individual pipes. Length is a quantity linked to direct sensory, practical experience, as reflected in terms related to length: long/short (height: tall/small). Terms such as 'long/short distance' are then used by analogy in the context of the more abstract quantity [[time]] (long/short duration).[time]] (long/short duration).)
  • Light-enhanced dark respiration  + ('''Light-enhanced dark respiration''' ''LE'''Light-enhanced dark respiration''' ''LEDR'' is a sharp (negative) maximum of dark respiration in plants in response to illumination, measured immediately after switching off the light. ''LEDR'' is supported by respiratory substrates produced during photosynthesis and closely reflects light-enhanced [[photorespiration]] (Xue et al 1996). Based on this assumption, the total photosynthetic oxygen flux ''TP'' is calculated as the sum of the measured net photosynthetic oxygen flux ''NP'' plus the absolute value of ''LEDR''.'NP'' plus the absolute value of ''LEDR''.)
  • Lightguides  + ('''Lightguides''' consist of optical fibre'''Lightguides''' consist of optical fibres (either single or in bundles) that can be used to transmit light to a sample from a remote [[light source]] and similarly receive light from a sample and transmit it to a remote [[detector]]. They have greatly contributed to the range of applications that for which optical methods can be applied. This is particularly true in the fields of medicine and biology.rue in the fields of medicine and biology.)
  • Linear phenomenological laws  + ('''Linear phenomenological laws''' are at '''Linear phenomenological laws''' are at the core of the thermodynamics of irreversible processes TIP, considered to apply near equilibrium but more generally in transport processes (e.g. Fick's law). In TIP, linearity is discussed as the dependence of generalized flows ''I'' or fluxes ''J'' on generalized forces, ''J'' = -''L''·''F'', where ''L'' is expected to be constant (as a prerequisite for linearity) and must not be a function of the force ''F'' ([[affinity]]) for [[Onsager 1931 Phys Rev |Onsager reciprocity]] to apply. This paradigm is challenged by the [[ergodynamics |ergodynamic concept]] of fundamentally non-linear isomorphic flux-[[force]] relations and is replaced by the generalized isomorphic flux-[[pressure]] relations. Flows ''I'' [MU·s<sup>-1</sup>] and forces ''F'' [J·MU<sup>-1</sup>] are conjugated pairs, the product of which yields power, ''I''·''F'' = ''P'' [J·s<sup>-1</sup> = W]. Flux ''J'' is system-size specific flow, such that volume-specific flux times force yields volume-specific power, ''P''<sub>''V''</sub> = ''J''·''F'' [W·m<sup>-3</sup>]. Then [[Vector |vectoral]] and [[Discontinuous system |vectorial]] transport processes are inherently non-linear flux-force relationships, with '''''L''''' = '''''u'''''·'''''c''''' in continuous transport processes along a gradient ('''''c''''' is the local concentration), or ''L'' = ''u''·''α'' (''α'' is the [[free activity]] in a discontinuous transport process across a semipermeable membrane) — formally not different from (isomorphic to) [[scalar]] chemical reactions.emical reactions.)
  • Linearity  + ('''Linearity''' is the ability of the meth'''Linearity''' is the ability of the method to produce test results that are proportional, either directly or by a well-defined mathematical transformation, to the concentration of the analyte in samples within a given range. This property is inherent in the [[Beer-Lambert law]] for [[absorbance]] alone, but deviations occur in [[scattering]] media. It is also a property of [[fluorescence]], but a [[fluorophore]] may not exhibit linearity, particularly over a large range of concentrations.arly over a large range of concentrations.)
  • Luminescence  + ('''Luminescence''' is spontaneous emission'''Luminescence''' is spontaneous emission of radiation from an electronically or vibrationally excited species not in thermal equilibrium with its environment (IUPC definition). An alternative definition is "Luminescence is emission of </br>light by a substance not resulting from heat." Luminescence comprises many different pehnomena. Luminescence from direct photoexcitation of the emitting species is called photoluminescence. Both [[fluorescence]] and [[phosphorescence]] are forms of photoluminescence. In biomedical research also forms of chemiluminescence (e.g.the luciferin reaction) are used. In chemiluminescence the emission of radiation results from a chemical reaction. For other forms of luminescence see [http://goldbook.iupac.org/L03641.html the IUPAC Gold Book].upac.org/L03641.html the IUPAC Gold Book].)
  • Magnesium Green  + ('''Magnesium Green''' (MgG) is an [[extrinsic fluorophores|extrinsic fluorophore]]'''Magnesium Green''' (MgG) is an [[extrinsic fluorophores|extrinsic fluorophore]] that fluoresces when bound to Mg<sup>2+</sup> and is used for measuring mitochondrial ATP production by [[mitochondrial preparations]]. Determination of mitochondrial ATP production is based on the different dissociation constants of Mg<sup>2+</sup> for [[ADP]] and [[ATP]], and the exchange of one ATP for one ADP across the mitochondrial inner membrane by the [[adenine nucleotide translocase]] (ANT). Using the dissociation constants for ADP-Mg<sup>2+</sup> and ATP-Mg<sup>2+</sup> and initial concentrations of ADP, ATP and Mg<sup>2+</sup>, the change in ATP concentration in the medium is calculated, which reflects mitochondrial ATP production. change in ATP concentration in the medium is calculated, which reflects mitochondrial ATP production.)
  • Malic enzyme  + ('''Malic enzyme''' (ME; EC 1.1.1.40) catal'''Malic enzyme''' (ME; EC 1.1.1.40) catalyzes the oxidative decarboxylation of L-malate to pyruvate with the concomitant reduction of the dinucleotide cofactor NAD<sup>+</sup> or NADP<sup>+</sup> and a requirement for divalent cations (Mg<sup>2+</sup> or Mn<sup>2+</sup>) as cofactors.</br></br>NAD(P)<sup>+</sup> + L-malate<sup>2-</sup> <--> NAD(P)H + pyruvate<sup>-</sup> + CO<sub>2</sub></br></br>Three groups of ME are distinguished (i) NAD<sup>+</sup>- and (ii) NADP<sup>+</sup>-dependent ME specific for NAD<sup>+</sup> or NADP<sup>+</sup>, respectively, and (iii) NAD(P)<sup>+</sup>- dependent ME with dual specificity for NAD<sup>+</sup> or NADP<sup>+</sup> as cofactor. Three isoforms of ME have been identified in mammals: cytosolic NADP<sup>+</sup>-dependent ME (cNADP-ME or ME1), mitochondrial NAD(P)<sup>+</sup>-dependent ME (mtNAD-ME or ME2; with NAD<sup>+</sup> or NADP<sup>+</sup> as cofactor, preference for NAD<sup>+</sup> under physiological conditions), and mitochondrial NADP<sup>+</sup>-dependent ME (mtNADP-ME or ME3). mtNAD-ME plays an important role in [[anaplerosis]] when glucose is limiting, particularly in heart and skeletal muscle. [[Tartronic acid]] (hydroxymalonic acid) is an inhibitor of ME.[[Tartronic acid]] (hydroxymalonic acid) is an inhibitor of ME.)
  • Malonate  + ('''Malonate''' (malonic acid) is a competitive inhibitor of [[succinate dehydrogenase]] ([[Complex II]]). Malonate is a substrate of [[malonyl-CoA synthase]].)
  • Malonyl-CoA synthase  + ('''Malonyl-CoA synthase''' or ACSF3 protei'''Malonyl-CoA synthase''' or ACSF3 protein is a mitochondrial fatty-acyl-CoA synthase found in mammals. Traditionally, malonyl-CoA is formed from acetyl-CoA by the action of acetyl-CoA carboxylase. However, Witkowski et al (2011) showed that mammals express malonyl-CoA Synthase (ACSF3) with enzymatic activity in the presence of [[malonate]] (Complex II inhibitor) and methylmalonate.(Complex II inhibitor) and methylmalonate.)
  • Marks - DatLab  + ('''Marks''' in [[DatLab]]'''Marks''' in [[DatLab]] define sections of a [[plot]] recorded over time. Marks are set by the [[user]] in real-time, or post-experimentally for basic level data analysis. Set Marks to obtain the median, average, standard deviation, [[Outlier index - DatLab |outlier index]] and range of the data within the mark, for calibration of the oxygen signal, flux analysis, or to delete marked data points. Marks are shown by a horizontal bar in the active plot. The default [[Mark names]] are given automatically in numerical sequence, independent for each plot. Rename marks individually by clicking into the horizontal bar, or use corresponding templates for renaming the entire sequence of marks. Several marks can be set on any plot.rks. Several marks can be set on any plot.)
  • VO2max  + ('''Maximum oxygen consumption''', ''V''<'''Maximum oxygen consumption''', ''V''<sub>O<sub>2</sub>max</sub>, is and index of cardiorespiratory fitness, measured by spiroergometry on human and animal organisms capable of controlled physical exercise performance on a treadmill or cycle ergometer. ''V''<sub>O<sub>2</sub>max</sub> is the maximum respiration of an organism, expressed as the volume of O<sub>2</sub> at [[STPD]] consumed per unit of time per individual object [mL.min<sup>-1</sup>.x<sup>-1</sup>]. If normalized per body mass of the individual object, ''M'' [kg.x<sup>-1</sup>], mass specific maximum oxygen consumption, ''V''<sub>O<sub>2</sub>max/''M''</sub>, is expressed in units [mL.min<sup>-1</sup>.kg<sup>-1</sup>]. specific maximum oxygen consumption, ''V''<sub>O<sub>2</sub>max/''M''</sub>, is expressed in units [mL.min<sup>-1</sup>.kg<sup>-1</sup>].)
  • Melatonin  + ('''Melatonin''' (N-acetyl-5-methoxytryptam'''Melatonin''' (N-acetyl-5-methoxytryptamine, aMT) is a highly conserved molecule present in unicellular to vertebrate organisms. Melatonin is synthesized from tryptophan in the pinealocytes by the pineal gland and also is produced in other organs, tissues and fluids (extrapineal melatonin). Melatonin has lipophilic and hydrophilic nature which allows it to cross biological membranes. Therefore, melatonin is present in all subcellular compartments predominantly in the nucleus and mitochondria. Melatonin has pleiotropic functions with powerful antioxidant, anti-inflammatory and oncostatic effects with a wide spectrum of action particularly at the level of mitochondria. » [[#Melatonin and protection from mitochondrial damage |'''MiPNet article''']][#Melatonin and protection from mitochondrial damage |'''MiPNet article''']])
  • Mersalyl  + ('''Mersalyl''' (C<sub>13</sub>H<sub>17</sub>HgNO<sub>6</sub>) is an inhibitor of the [[Pi symporter]].)
  • Metformin  + ('''Metformin''' (dimethylbiguanide) is mainly known as an important antidiabetic drug which is effective, however, in a wide spectrum of degenerative diseases. It is an inhibitor of [[Complex I]] and [[glycerophosphate dehydrogenase complex]].)
  • Methylmalonic acid  + ('''Methylmalonic acid''' (Mma) is a common intermediate in many catabolic processes. In methylmalonic acidemia mitochondrial dysfunction can be observed, related to accumulation of Mma and associated with neurological symptoms.)
  • Metrology  + ('''Metrology''' is the science of measurement, including all aspects both theoretical and practical with reference to measurements, whatever their uncertainty, and in whatever fields of science or technology they occur [SOURCE: VIM:1993, 2.2].)
  • Microplates  + ('''Microplate''' readers allow large numbe'''Microplate''' readers allow large numbers of sample reactions to be assayed in well format microtitre plates. The most common microplate format used in academic research laboratories or clinical diagnostic laboratories is 96-well (8 by 12 matrix) with a typical reaction volume between 100 and 200 µL per well. a wide range of applications involve the use of [[fluorescence]] measurements , although they can also be used in conjunction with [[absorbance]] measurements.[absorbance]] measurements.)
  • Microxia  + ('''Microxia''' (deep hypoxia) is obtained when trace amounts of O<sub>2</sub> exert a stimulatory effect on respiration above the level where metabolism is switched to a purely [[anaerobic]] mode.)
  • MitoFit protocols  + ('''MitoFit protocols''' are moderated by t'''MitoFit protocols''' are moderated by the [[MitoFit moderators]] (MitoFit team), either as protocols with direct reference to publications available to the scientific communicty, or protocols additionally described and made available in Bioblast with full information on authors (including contact details), author contributions, and editor (moderator) in charge. This aims at a comprehensive [[MitoFit data repository]], which will require global input and cooperation.will require global input and cooperation.)
  • MitoFit registered project  + ('''MitoFit registered projects''' are anno'''MitoFit registered projects''' are announced with reference to [[MitoFit protocols]] as [[publicly deposited protocols]]. Project registration is a two-phase process. Guidelines will be defined. (''1'') Pre-registration of a project requires submission to a MitoFit moderator (editor), including protocol details with reference to MitoPedia protocols, or with submission of protocols for publication (Open Access) in MitoPedia. The MitoFit (Bioblast) editors will edit the submitted protocols (layout) and insert into Bioblast submitted pre-registrations and protocols. (''2'') MitoFit moderators (editors) will set up a [[MitoFit accreditation panel]], in which the registrant will be included (perhaps not in the long run, to avoid conflict of interests) and/or for which the registrant can suggest delegates (compare peer review). Accredited [[MitoFit protocols]] are labelled as [[MitoFit accredited]], and the pre-registered MitoFit project becomes labelled and listed as '''MitoFit registered project''' (MitoFit accredited). This is possible before (advance registration), during progress, and after completion of a study (post-registration). A MitoFit registered project receives a code for feeding data into the [[MitoFit data repository]].[[MitoFit data repository]].)
  • MitoKit-CII/Malonate-nv  + ('''MitoKit-CII/Malonate-nv''' (diacetoxyme'''MitoKit-CII/Malonate-nv''' (diacetoxymethyl malonate) is a plasma membrane-permeable prodrug (permeable malonate; Mnanv) that diffuses across the plasma membrane. Cleavage of diacetoxymethyl groups is mediated by intracellular esterases, thus releasing [[malonate]] in the intracellular space. Abliva #: 01-161-s2e intracellular space. Abliva #: 01-161-s2)
  • MitoKit-CII/Succinate-nv  + ('''MitoKit-CII/Succinate-nv''' (diacetoxym'''MitoKit-CII/Succinate-nv''' (diacetoxymethyl succinate) is a plasma membrane-permeable prodrug (permeable succinate; Snv) that diffuses across the plasma membrane. Cleavage of diacetoxymethyl groups is mediated by intracellular esterases, thus releasing [[succinate]] in the intracellular space. Abliva #: 01-118-s4 intracellular space. Abliva #: 01-118-s4)
  • MitoSOX  + ('''MitoSOX<sup>TM</sup>''' is '''MitoSOX<sup>TM</sup>''' is the version of the [[Dihydroethidium|hydroetidine]] designed to target mitochondria in live cells for the detection of [[superoxide]] (O<sub>2</sub><sup>•-</sup>). The oxidation of the compound by O<sub>2</sub><sup>•-</sup> is easily detected in the red spectrum. One of the advantages of MitoSOX<sup>TM</sup> is its selectivity for O<sub>2</sub><sup>•-</sup> but not for other [[Reactive oxygen species|reactive oxygen species]] or [[Reactive nitrogen species|reactive nitrogen species]]. </br>::::• Readily '''oxidized by superoxide''' but not by other ROS- or RNS-generating systems</br>::::• '''Absorption/emission maxima''': ~510/580 nm</br>::::• Use for '''live cell imaging'''</br>::::• Rapidly and selectively '''targeted to the mitochondria'''</br></br></br>'''MitoSOX<sup>TM</sup>''' has been widely used in life cell imaging but it is not free of problems and should be used cautiously. For example, it has been highlighted that the use of potentiometric dyes which accumulates into the mitochondria due to its moiety with [[Tetraphenylphosphonium]], confers a membrane potential sensitivity that creates a series of artifacts and problems not often considered.hosphonium]], confers a membrane potential sensitivity that creates a series of artifacts and problems not often considered.)
  • Mitochondria  + ('''Mitochondria''' (Greek ''mitos'': threa'''Mitochondria''' (Greek ''mitos'': thread; ''chondros'': granule) are small structures within cells, which function in cell respiration as powerhouses or batteries. Mitochondria belong to the '''[[bioblasts]]''' of Richard Altmann. Abbreviation: mt, as generally used in mtDNA. Singular: mitochondrion (bioblast); plural: mitochondria (bioblasts).oblast); plural: mitochondria (bioblasts).)
  • MitoOx1  + ('''Mitochondrial respiration medium, MitoOx1,''' used by the Budapest groups for respirometry und Amplex Red trials.)
  • MiP-Collection  + ('''Mitochondrial Physiology - Historical C'''Mitochondrial Physiology - Historical Collection'''</br></br>'''Aims'''</br></br>The growing '''''MiP-Collection''''' aims at preserving scientific instruments that are of historical importance in the field of bioenergetics and mitochondrial physiology. The fast turnover of scientific equipment makes obsolete even comparatively recent instrumentation. The Oroboros O2k was the first commercial mitochondrial respirometer using a computer for data acquisition. Today, [[chart recorder]]s are nearly forgotten. Due to limitations of storage space, unused scientific equipment is disposed of, despite its potential historical value. The disposal of some unique apparatus constitutes an irreversible loss to science and society, and to the continued appreciation of the foundations of our scientific discipline. </br></br>You may consider to make items of scientific historical interest in mitochondrial physiology available to the ''MiP-Collection''. These items of the ''MiP-Collection'' may specifically include historically valuable </br> </br>* equipment and accessories,</br>* books and symposium proceedings, </br>* reprint collections,</br>* pictures, slides, documents.ollections, * pictures, slides, documents.)
  • MiP03  + ('''Mitochondrial Preservation Medium, MiP03''', developed for preservation of [[isolated mitochondria]].)
  • Mitochondrial concentration  + ('''Mitochondrial concentration''' is ''C<sub>mtE</sub>'' = ''mtE''·''V''<sup>-1</sup> [mtEU·m<sup>-3</sup>]. mt-Concentration is an experimental variable, dependent on sample concentration.)
  • Mitochondrial content  + ('''Mitochondrial content''' per object ''X'' is ''mtE<sub><u>N</u>X</sub>'' = ''mtE''·''N<sub>X</sub>''<sup>-1</sup> [mtEU·x<sup>-1</sup>].)
  • Mitochondrial marker enzymes  + ('''Mitochondrial marker enzymes''' are enzymes that are specifically present in mitochondria, in the mt-matrix, the inner mt-membrane, the inter-membrane space, or the outer mt-membrane.)
  • Mitochondrial marker  + ('''Mitochondrial marker'''s are structural'''Mitochondrial marker'''s are structural or functional properties that are specific for mitochondria. A structural mt-marker is the area of the inner mt-membrane or mt-volume determined stereologically, which has its limitations due to different states of swelling. If mt-area is determined by electron microscopy, the statistical challenge has to be met to convert area into a volume. When fluorescent dyes are used as mt-marker, distinction is necessary between mt-membrane potential dependent and independent dyes. mtDNA or cardiolipin content may be considered as a mt-marker. [[Mitochondrial marker enzymes]] may be determined as molecular (amount of protein) or functional properties (enzyme activities). Respiratory capacity in a defined respiratory state of a mt-preparation can be considered as a functional mt-marker, in which case respiration in other respiratory states is expressed as [[flux control ratio]]s. » [[Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']][Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']])
  • Mitochondrial competence  + ('''Mitochondrial metabolic competence''' i'''Mitochondrial metabolic competence''' is the organelle's capacity to provide adequate amounts of ATP in due time, by adjusting the mt-membrane potential, mt-redox states and the ATP/ADP ratio according to the metabolic requirements of the cell.</br></br>The term '''mitochondrial competence''' is also known in a genetic context: Mammalian mitochondria possess a natural competence for DNA import.</br></br>'''''[[MitoCom_O2k-Fluorometer]]''''' is a '''Mitochondrial Competence''' network, the nucleus of which is formed by the K-Regio project ''[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.)
  • Mitochondrial preparations  + ('''Mitochondrial preparations''' (mtprep) '''Mitochondrial preparations''' (mtprep) are isolated mitochondria (imt), tissue homogenate (thom), mechanically or chemically permeabilized tissue (permeabilized fibers, pfi) or permeabilized cells (pce). In mtprep the plasma membranes are either removed (imt) or mechanically (thom) and chemically permeabilized (pfi), while mitochondrial functional integrity and to a large extent mt-structure are maintained in incubation media optimized to support mitochondrial physiological performance. According to this definition, submitochondrial particles (smtp) are not a mtprep, since mitochondrial structure is altered although specific mitochondrial functions are preserved.fic mitochondrial functions are preserved.)
  • Buffer Z  + ('''Mitochondrial respiration medium, Buffer Z''', described by [http://bioblast.at/index.php/Perry_2011_Biochem_J Perry 2011 Biochem J] For composition and comparison see: [[Mitochondrial respiration media: comparison]])
  • MiR05  + ('''Mitochondrial respiration medium, MiR05'''Mitochondrial respiration medium, MiR05''', developed for oxygraph incubations of [[mitochondrial preparations]]. Respiration of [[living cells]] may be assessed in MiR05 by adding pyruvate (P) as an external source. [[MiR06]] = MiR05 + catalase.</br>[[MiR05Cr]] = [[MiR05]] + creatine.[[MiR05]] + creatine.)
  • MiRK03  + ('''Mitochondrial respiration medium, MiRK03''', modified after a medium described by [[Komary 2010 Biochim Biophys Acta]], intended for use as medium for H2O2 production measurement with Amplex Red.)
  • MitoOx2  + ('''Mitochondrial respiration medium, MitoO'''Mitochondrial respiration medium, MitoOx2''', developed for oxygraph incubations of [[mitochondrial preparations]] to measure the H<sub>2</sub>O<sub>2</sub> production. MitoOx2 yields a higher optical sensitivity and lower "drift" (oxidation of the fluorophore precurcor without H<sub>2</sub>O<sub>2</sub> present) for Amplex UltraRed(R) than e.g. [[MiR05|MiR05]].[[MiR05|MiR05]].)
  • MiR06  + ('''Mitochondrial respiration medium, [[MiPNet14.13 Medium-MiR06|MiR06]]''', developed for oxygraph incubations of [[mitochondrial preparations]]. MiR06 = MiR05 plus [[catalase]]. MiR06Cr = MiR06 plus [[creatine]].)
  • Molar mass  + ('''Molar mass''' ''M'' is the mass of a c'''Molar mass''' ''M'' is the mass of a chemical compound divided by its amount-of-substance measured in moles. It is defined as ''M''<sub>B</sub> = ''m''/''n''<sub>B</sub>, where ''m'' is the total mass of a sample of pure substance and ''n''<sub>B</sub> is the amount of substance B given in moles. The definition applies to pure substance. The molar mass allows for converting between the mass of a substance and its amount for bulk quantities. It is calculated as the sum of standard atomic weights of all atoms that form one entity of the substance.</br></br>The appropriate [[SI base units]] is kg·mol<sup>-1</sup>. However, for historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.)
  • Monoamine oxidase  + ('''Monoamine oxidases''' are enzymes boun'''Monoamine oxidases''' are enzymes bound to the outer membrane of mitochondria and they catalyze the oxidative deamination of monoamines. Oxygen is used to remove an amine group from a molecule, resulting in the corresponding aldehyde and ammonia. Monoamine oxidases contain the covalently bound cofactor [[FAD]] and are, thus, classified as flavoproteins.nd are, thus, classified as flavoproteins.)
  • Myxothiazol  + ('''Myxothiazol''' Myx is an inhibitor of [[Complex III]]'''Myxothiazol''' Myx is an inhibitor of [[Complex III]] (CIII). CIII also inhibits [[Complex I|CI]]. Myxothiazol binds to the Q<sub>o</sub> site of CIII (close to cytochrome ''b''<sub>L</sub>) and inhibits the transfer of electrons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.ons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.)
  • N-ethylmaleimide  + ('''N-ethylmaleimide''' is an organic compound that is derived from maleic acid and blocks endogenous Pi transport.)
  • NADH  + ('''NAD<sup>+</sup>''' and '''NADH''': see [[Nicotinamide adenine dinucleotide]].)
  • NADH calibration - DatLab  + ('''NADH calibration''')
  • NS e-input  + ('''NS e-input''' or the [[NS-pathway control state]]'''NS e-input''' or the [[NS-pathway control state]] is electron input from a combination of substrates for the [[N-pathway control state]] and [[S-pathway control state]] through Complexes [[CI]] and [[CII]] simultaneously into the [[Q-junction]]. NS e-input corresponds to [[TCA cycle]] function ''in vivo'', with [[convergent electron flow]] through the [[Electron transfer pathway]]. In [[Mitochondrial preparations|mt-preparations]], NS e-input requires addition not only of NADH- (N-) linked substrates (pyruvate&malate or glutamate&malate), but of succinate (S) simultaneously, since [[metabolite depletion]] in the absence of succinate prevents a significant stimulation of S-linked respiration. For more details, see: [[Additive effect of convergent electron flow]].[[Additive effect of convergent electron flow]].)
  • Nagarse  + ('''Nagarse''' is a broad specifity proteas'''Nagarse''' is a broad specifity protease from bacteria used to promote breakdown of the cellular structure of "hard" tissues such as skeletal muscle or heart mucsle that cannot be homogenized easily without treatment with a protease. Nagarse is frequently used in protocols for isolating mitochondria from muscle tissue.isolating mitochondria from muscle tissue.)
  • Nicotinamide adenine dinucleotide  + ('''Nicotinamide adenine dinucleotide''', N'''Nicotinamide adenine dinucleotide''', NAD<sup>+</sup> and NADH (pyridine nucleotide coenzymes, NAD and NADP), is an oxidation-reduction coenzyme (redox cofactor; compare [[FADH2 |FADH<sub>2</sub>]]). In the [[NADH electron transfer-pathway state]] fuelled by type N-substrates, mt-matrix dehydrogenases generate NADH, the substrate of [[Complex I]] (CI). The reduced N-substrate RH<sub>2</sub> is oxidized and NAD<sup>+</sup> is reduced to NADH,:::: RH<sub>2</sub> + NAD<sup>+</sup> → NADH + H<sup>+</sup> + RThe mt-NADH pool integrates the activity of the [[TCA cycle]] and various matrix dehydrogenases upstream of CI, and thus forms a junction or funnel of electron transfer to CI, the [[N-junction]] (compare [[F-junction]], [[Q-junction]]). NAD<sup>+</sup> and NADH are not permeable through the [[Mitochondrial inner membrane|mt-inner membrane]], mtIM. Therefore, an increase of mitochondrial respiration after the addition of NADH may indicate an alteration of the mtIM integrity. Cytosolic NADH is effectively made available for mitochondrial respiration through the [[malate-aspartate shuttle]] or [[Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].)
  • Nitric oxide synthase  + ('''Nitric oxide synthase''', NOS, catalyzes the production of nitric oxide (NO•), which is a [[reactive nitrogen species]]. There are four types of NOS: neuronal NOS (nNOS), endothelial NOS (eNOS), inducible NOS (iNOS) and mitochondrial NOS (mtNOS).)
  • Normalization of rate  + ('''Normalization of rate''' (respiratory r'''Normalization of rate''' (respiratory rate, rate of hydrogen peroxide production, growth rate) is required to report experimental data. Normalization of rates leads to a diversity of formats. Normalization is guided by physicochemical principles, methodological considerations, and conceptual strategies. The challenges of measuring respiratory rate are matched by those of normalization. Normalization of rates for: (''1'') the number of objects (cells, organisms); (''2'') the volume or mass of the experimental sample; and (''3'') the concentration of mitochondrial markers in the instrumental chamber are sample-specific normalizations, which are distinguished from system-specific normalization for the volume of the instrumental chamber (the measuring system). Metabolic ''flow'', ''I'', per [[Count |countable]] object increases as the size of the object is increased. This confounding factor is eliminated by expressing rate as sample-mass specific or sample-volume specific ''flux'', ''J''. [[Flow]] is an [[extensive quantity]], whereas [[flux]] is a [[specific quantity]]. If the aim is to find differences in mitochondrial function independent of mitochondrial density, then normalization to a [[mitochondrial marker]] is imperative. [[Flux control ratio]]s and [[flux control efficiency |flux control efficiencies]] are based on internal normalization for rate in a reference state, are independent of externally measured markers and, therefore, are statistically robust. and, therefore, are statistically robust.)
  • Normothermia  + ('''Normothermia''' in endotherms is a stat'''Normothermia''' in endotherms is a state when body core temperature is regulated within standard limits. In humans, normothermia is considered as a body temperature of 36.4 to 37.8 °C. Normothermia, however, has a different definition in the context of [[ectotherms]].</br>» [[Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']]Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']])
  • Nuclear respiratory factor 1  + ('''Nuclear respiratory factor 1''' is a transcription factor downstream of [[Peroxisome proliferator-activated receptor gamma coactivator 1-alpha|PGC-1alpha]] involved in coordinated expression of [[nDNA]] and [[mtDNA]].)
  • O-ring\Viton\12x1 mm  + ('''O-ring\[[Viton]]'''O-ring\[[Viton]]\12x1 mm''', for PVDF or PEEK O2k-Stoppers, box of 4 as spares.</br></br>Two spare boxes of this product are standard components of the [[O2k-Assembly Kit]] ([[O2k-FluoRespirometer]]) as well as the [[O2k-TPP+ ISE-Module]] and the [[O2k-NO Amp-Module]].[[O2k-NO Amp-Module]].)
  • O-ring\Viton\16x2 mm  + ('''O-ring\[[Viton]]\16x2 mm''', mounted on the [[O2k-Chamber Holder sV]].)
  • Oxygen calibration - DatLab  + ('''O2 calibration''' is the calibration in'''O2 calibration''' is the calibration in DatLab of the oxygen sensor. It is a prerequisite for obtaining accurate measurements of respiration. Accurate calibration of the oxygen sensor depends on (''1'') equilibration of the incubation medium with air oxygen partial pressure at the temperature defined by the experimenter; (''2'') zero oxygen calibration; (''3'') high stability of the POS signal tested for sufficiently long periods of time; (''4'') linearity of signal output with oxygen pressure in the range between oxygen saturation and zero oxygen pressure; and (''5'') accurate oxygen solubility for aqueous solutions for the conversion of partial oxygen pressure into oxygen concentration. The standard oxygen calibration procedure is described below for high-resolution respirometry with the calibration routine using instrumental calibration DL-Protocols in [[DatLab]].[[DatLab]].)
  • O2k repair  + ('''O2k repair''' of defective hardware may'''O2k repair''' of defective hardware may require replacement of spare parts. Some electronic or mechanical defects may be solved only by repair of the O2k in the electronics workshop of Oroboros Instruments, ''e.g.'', a defective Peltier unit (temperature control).ective Peltier unit (temperature control).)
  • O2k status line  + ('''O2k status line''' is found above the [[O2k signal line]]'''O2k status line''' is found above the [[O2k signal line]]. It contains information about the chamber label, O2 calibration, amperometric calibration, potentiometric calibration, the [[block temperature]], the [[illumination]] in chambers, the TIP2k status and the [[Automatic pan]].[[Automatic pan]].)
  • O2k  + ('''O2k''' - [[Oroboros O2k]]: the modular system for [[high-resolution respirometry]].)
  • O2k-Amperometric OroboPOS Twin-Channel  + ('''O2k-Amperometric OroboPOS Twin-Channel''''O2k-Amperometric OroboPOS Twin-Channel''': Two-channel variable polarization voltage; current/voltage converter for the polarographic oxygen sensor (POS); amplifyer with digital gain settings (1x, 2x, 4x, 8x); A/D converter; output in the range -10 V to 10 V. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Barometric Pressure Transducer  + ('''O2k-Barometric Pressure Transducer''', '''O2k-Barometric Pressure Transducer''', A/D converter and digital output to DatLab for continuous recording of [[barometric pressure]] [kPa or mmHg], integrated into the air calibration of the POS ([[MiPNet06.03 POS-calibration-SOP]]). Integral component of the [[O2k-Main Unit]]. The warranty on the accuracy of the signal obtained from the O2k-Barometric Pressure Transducer expires within three years.ure Transducer expires within three years.)
  • O2k-Electromagnetic Stirrer Twin-Control  + ('''O2k-Electromagnetic Stirrer Twin-Contro'''O2k-Electromagnetic Stirrer Twin-Control''' for smooth rotation of the [[Stirrer-Bar\white PVDF\15x6 mm|stirrer bars]] in the two [[O2k-chamber]]s; with slow-start function to prevent decoupling of the stirrer bar; regulated stirrer speed in the range of 100 to 800 rpm (decoupling may occur at higher stirrer speeds), independent for the two O2k-Chambers; automatic events sent to DatLab when the stirrer is switched on/off or when the rotation seed is changed by the experimenter. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Main Power Cable  + ('''O2k-Main Power Cable''', for connecting the main unit to the power supply.)
  • O2k-Peltier Temperature Control  + ('''O2k-Peltier Temperature Control''': Bui'''O2k-Peltier Temperature Control''': Built-in electronic thermostat controlling temperature for two [[O2k-chamber]]s in the range of 4 to 47 °C; ±0.002 °C (at room temperature). Continuous recording of the O2k-Copper Block temperature with DatLab. Temperature change from 20 to 30 °C within 15 min; cooling from 30 to 20 °C within 20 min. Integral component of the [[O2k-Main Unit]]. The electronic temperature control of the O2k replaced the conventional water jacket.2k replaced the conventional water jacket.)
  • Obesity  + ('''Obesity''' is a disease resulting from '''Obesity''' is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent [[body fat excess]] associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with [[body mass excess]] up to a critical stage of obesogenic lifestyle-induced [[sarcopenia]], when loss of muscle mass results in further deterioration of physical performance particularly at older age.cal performance particularly at older age.)
  • OctGM  + ('''OctGM''': [[Octanoylcarnitine]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-015]], [[SUIT-016]], [[SUIT-017]])
  • OctGMS  + ('''OctGMS''': [[Octanoylcarnitine]] &[[Glutamate]] & [[Malate]]& [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-016]], [[SUIT-017]])
  • OctM pathway control state  + ('''OctM''': [[Octanoylcarnitine]]'''OctM''': [[Octanoylcarnitine]] & [[Malate]].</br></br>'''MitoPathway control state:''' F</br></br>'''SUIT protocols:''' [[SUIT-002]], [[SUIT-015]], [[SUIT-016]], [[SUIT-017]]</br></br>Respiratory stimulation of the [[Fatty acid oxidation pathway control state| FAO-pathway]], F, by [[fatty acid]] FA in the presence of [[malate]] M. Malate is a [[NADH Electron transfer-pathway state |type N substrate]] (N), required for the F-pathway. In the presence of [[Malate-anaplerotic pathway control state|anaplerotic pathways]] (''e.g.'', [[Malic enzyme|mitochondrial malic enzyme, mtME]]) the F-pathway capacity is overestimated, if there is an added contribution of NADH-linked respiration, F(N) (see [[SUIT-002]]). The FA concentration has to be optimized to saturate the [[Fatty acid oxidation pathway control state| FAO-pathway]], without inhibiting or uncoupling respiration. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]]. High concentration of [[malate]], typically 2 mM, saturates the [[N-pathway]].[[N-pathway]].)
  • OctPGM pathway control state  + ('''OctPGM''': [[Octanoylcarnitine]]'''OctPGM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocols:''' [[SUIT-002]]</br>:This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<1 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate and glutamate is added to compare FAO as the background state with FN as the reference state.O as the background state with FN as the reference state.)
  • OctPGMS pathway control state  + ('''OctPGMS''': [[Octanoylcarnitine]]'''OctPGMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]].</br></br>'''MitoPathway control state:''' [[FNS]]</br></br>'''SUIT protocol:''' [[SUIT-001]], [[SUIT-002]], [[SUIT-015]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPGMSGp pathway control state  + ('''OctPGMSGp''': [[Octanoylcarnitine]]'''OctPGMSGp''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-002]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPM pathway control state  + ('''OctPM''': [[Octanoylcarnitine]]'''OctPM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocol:''' [[SUIT-002]], [[SUIT-005]]</br></br>This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<0 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate is added to compare FAO as the background state with FN as the reference state. the background state with FN as the reference state.)
  • OctPMS  + ('''OctPMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocol:''' [[SUIT-005]])
  • Octanoate  + ('''Octanoate''' (octanoic acid). C<sub>8</sub>H<sub>16</sub>O<sub>2</sub> Common name: Caprylic acid.)
  • Octanoylcarnitine  + ('''Octanoylcarnitine''' is a medium-chain fatty acid (octanoic acid: eight-carbon saturated fatty acid) covalently linked to [[carnitine]], frequently applied as a substrate for [[fatty acid oxidation]] (FAO) in [[mitochondrial preparations]].)
  • Oligomycin  + ('''Oligomycin''' (Omy) is an inhibitor of '''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking its proton channel (Fo subunit), which is necessary for oxidative phosphorylation of ADP to ATP (energy production). The inhibition of ATP synthesis also inhibits respiration. In OXPHOS analysis, Omy is used to induce a [[LEAK respiration]] state of respiration (abbreviated as ''L''(Omy) to differentiate from ''L''(n), LEAK state in the absence of ADP).L''(n), LEAK state in the absence of ADP).)
  • Optics  + ('''Optics''' are the components that are u'''Optics''' are the components that are used to relay and focus light through a [[spectrofluorometer]] or [[spectrophotometer]]. These would normally consist of lenses and/or concave mirrors. The number of such components should be kept to a minimum due to the losses of light (5-10%) that occur at each surface. light (5-10%) that occur at each surface.)
  • Ouabain  + ('''Ouabain''' (synonym: G-strophantin octa'''Ouabain''' (synonym: G-strophantin octahydrate) is a poisonous cardiac glycoside. The classical mechanism of action of ouabain involves its binding to and inhibition of the plasma membrane Na+/K+-ATPase (sodium pump) especially at the higher concentrations. Low (nanomolar and subnanomolar) concentrations of ouabain stimulate the Na-K-ATPase.ions of ouabain stimulate the Na-K-ATPase.)
  • Overfitting  + ('''Overfitting''' in statistics is the act'''Overfitting''' in statistics is the act of mistaking noise for a signal. Overfitting makes a model look ‘’better’’ on paper but perform ‘’worse’’ in the real world. This may make it easier to get the model published in an academic journal or to sell to a client, crowding out more honest models from the marketplace. But if the model is fitting noise, it has the potential to hurt the science (quoted from [[Silver 2012 Penguin Press]]).nguin Press]]).)
  • Overlay of plots - DatLab  + ('''Overlay of plots''' is defined in DatLa'''Overlay of plots''' is defined in DatLab as selection of graph layouts showing identical plots from the two O2k-chambers in each graph. Overlay of plots is selected in [[Graph layout - DatLab |Graph layout]]. Superimposed traces of flux/flow from chambers A and B are then shown in Graph 1, and of concentration in chambers A and B in Graph 2.</br></br>There are basically two ways to superimpose traces recorded in different experiments: Export of the graphics via windows metafile or export of the data to e.g. a spreadsheet program.</br></br>If you export via wmf you also can manipulate the graphics but then usually the lines are broken up in different segments. This can be done in various programs like MS Word, Open Office Draw and even in MSPower Point, though this maybe is the worst program to do this. It is better to manipulate them in a proper program like OO Draw, convert it to an unchangeable picture and then import it to a presentation graphics. Anyway, when you import directly to Power point (or other programs), make sure not to import it as a "picture" but as a metafile. Also in some programs you might afterwards have to "break" it up, or accept a "conversion to a MS Draw object" or other similar linguistic inventions of the software gurus. For this option we suggest to do as much as possible directly in DatLab (setting colors, line widths, ..) using the options in "Plots"/"select plots" and "graph"/"options". </br></br>The “hardcore“ option is to export the data and import it into e.g. a spreadsheet program (MS Excel , OOCalc). It takes longer to have a simple overlay but gives you far less problems later and its easier to make changes later. To do this you can export your dataset "Export"/"Data to Textfile" and then go from there."Data to Textfile" and then go from there.)
  • Oxalomalic acid  + ('''Oxalomalic acid''' is an inhibitor of a'''Oxalomalic acid''' is an inhibitor of aconitase (and of cytoplasmic NADP-dependent isocitrate dehydrogenase). Aconitase mediates the isomerization of citrate to isocitrate as the first step in the [[TCA_cycle| TCA cycle]]. Oxalomalic acid has been used at 1 mM concentration and after 45 min of pre-incubation to inhibit aconitase in permeabilized rat Soleus muscle fibres, inhibiting the enzyme by 24% ([[Osiki 2016 FASEB J]]).[[Osiki 2016 FASEB J]]).)
  • Oxidative stress  + ('''Oxidative stress''' results from an imb'''Oxidative stress''' results from an imbalance between pro-oxidants and antioxidants shifting the equilibrium in favor of the pro-oxidants. This process can be due by an increment in pro-oxidants, by a depletion of antioxidant systems or both. Oxidative stress generates oxidative damage of proteins, lipids and DNA.dative damage of proteins, lipids and DNA.)
  • Oxoglutarate dehydrogenase  + ('''Oxoglutarate dehydrogenase''' (α-ketogl'''Oxoglutarate dehydrogenase''' (α-ketoglutarate dehydrogenase) is a highly regulated enzyme of the [[tricarboxylic acid cycle]]. It catalyses the conversion of oxoglutarate (alpha-ketoglutarate) to succinyl-CoA, reduces NAD<sup>+</sup> to [[NADH]] and thus links to [[Complex I]] in the Electron transfer-pathway. OgDH is activated by low Ca<sup>2+</sup> (<20 µM) but inactivated by high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.y high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.)
  • Oxygen flux  + ('''Oxygen flux''', ''J''<sub>O<su'''Oxygen flux''', ''J''<sub>O<sub>2</sub></sub>, is a [[specific quantity]]. Oxygen [[flux]] is [[oxygen flow]], ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup> per system] (an [[extensive quantity]]), divided by system size. Flux may be volume-specific (flow per volume [pmol·s<sup>-1</sup>·mL<sup>-1</sup>]), mass-specific (flow per mass [pmol·s<sup>-1</sup>·mg<sup>-1</sup>]), or marker-specific (flow per mtEU). Oxygen flux (''e.g.'', per body mass, or per cell volume) is distinguished from oxygen flow (per number of objects, such as cells), ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup>·x<sup>-1</sup>]. These are different forms of [[normalization of rate]].lization of rate]].)
  • Oxygen kinetics  + ('''Oxygen kinetics''' describes the depend'''Oxygen kinetics''' describes the dependence of respiration of isolated mitochondria or cells on oxygen partial pressure. Frequently, a strictly hyperbolic kinetics is observed, with two parameters, the oxygen pressure at half-maximum flux, ''p''<sub>50</sub>, and maximum flux, Jmax. The ''p''<sub>50</sub> is in the range of 0.2 to 0.8 kPa for cytochrome ''c'' oxidase, isolated mitochondria and small cells, strongly dependent on ''J''<sub>max</sub> and coupling state.lls, strongly dependent on ''J''<sub>max</sub> and coupling state.)
  • Oxygen pressure  + ('''Oxygen pressure''' or partial [[pressure]] of oxygen [kPa], related to oxygen concentration in solution by the [[oxygen solubility]], ''S''<sub>O2</sub> [µM/kPa].)
  • Ap5A  + ('''P1,P5-Di(adenosine-5')pentaphosphate (Ap5A)''' is an inhibitor of [[adenylate kinase]] (ADK), the enzyme which rephosphorylates AMP to ADP, consuming ATP (ATP + AMP ↔ 2 ADP).)
  • PGMSGp pathway control state  + ('''PGMSGp''': [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]]. '''MitoPathway control state:''' NSGp '''SUIT protocol:''' [[SUIT-038]] This substrate combination supports convergent electron flow to the [[Q-junction]].)
  • POS-Service Kit  + ('''POS-Service Kit''', in [[O2k-Accessory Box]] including all oxygen sensor service accessories for membrane mounting and service of the [[OroboPOS|POS]].)
  • PREreview  + ('''PREreview''' encourages scientists to p'''PREreview''' encourages scientists to post their scientific outputs as preprints. PREreview makes it easier to start and run a Preprint Journal Club, or integrate preprint review into conventional journal clubs. PREreview seeks to diversify peer review in the academic community by crowdsourcing pre-publication feedback to improve the quality of published scientific output, and to train early-career researchers (ECRs) in how to review others' scientific work. We want to facilitate a cultural shift in which every scientist posts, reads, and engages with preprints as standard practice in scholarly publishing. We see PREreview as a hub to support and nurture the growth of a community that openly exchanges timely, constructive feedback on emerging scientific outputs. We believe that by empowering ECRs through peer review training programs, thereby increasing the diversity of researchers involved in the peer review process, PREreview will help establish a healthier and more sustainable culture around research dissemination and evaluation. This project was born in April 2017 as a collaboration between Samantha Hindle and Daniela Saderi, scientists and [[ASAPbio]] Ambassadors, with help from Josh Nicholson, at the time working for [https://www.authorea.com/aboutus Authorea].ttps://www.authorea.com/aboutus Authorea].)
  • Packing\O2k-Box 1+2  + ('''Packing\O2k-Box 1+2''' for shipping the [[O2k-Core]]. O2k-WorldWide delivery, insurance and handling are included in the O2k-Core.)
  • PalM  + ('''PalM''': [[Palmitoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctM  + ('''PalOctM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGM  + ('''PalOctPGM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGMS  + ('''PalOctPGMS''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPM  + ('''PalOctPM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalPGMSGp pathway control state  + ('''PalPGMSGp''': [[Palmitoylcarnitine]]'''PalPGMSGp''': [[Palmitoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-026]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • Palmitate  + ('''Palmitate''' is a term for the salts an'''Palmitate''' is a term for the salts and esters of palmitic acid (CH<sub>3</sub>(CH<sub>2</sub>)<sub>14</sub>COOH). Palmitic acid is the first fatty acid produced during fatty acid synthesis and the precursor to longer fatty acids. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC), which is responsible for converting acetyl-CoA to malonyl-CoA, which in turn is used to add to the growing acyl chain, thus preventing further palmitate generation. In order to dissolve the water-insoluble sodium palmitate, [[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.[[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.)
  • Palmitoyl-CoA  + ('''Palmitoyl-CoA''' is a coenzyme A deriva'''Palmitoyl-CoA''' is a coenzyme A derivative of palmitate formed by acyl-CoA synthase. In contrast to medium- and short-chain acyl-CoA, palmitoyl-CoA cannot freely diffuse into the mitochondrial matrix. Formation of palmitoylcarnitine by CPTI is necessary prior to transfer into mitochondria for further fatty acid oxidation (β-oxidation). To study [[Fatty acid oxidation]] using Palmitoyl-CoA, [[Carnitine]] and low amount of malate is needed on mitochondrial preparations.e is needed on mitochondrial preparations.)
  • Palmitoylcarnitine  + ('''Palmitoylcarnitine''' is an ester deriv'''Palmitoylcarnitine''' is an ester derivative of [[carnitine]] (long-chain acylcarnitine) involved in the metabolism of fatty acids. Within the cell, palmitoylcarnitine is transported into the mitochondria to deliver palmitate for fatty acid oxidation and energy production.atty acid oxidation and energy production.)
  • Pathway control efficiency  + ('''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]]'''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]], expressing the relative change of flux in response to a transition between two [[electron-transfer-pathway state]]s due to a change of (''1'') substrate availability or (''2'') inhibition of enzyme steps in the pathway, in a defined [[coupling-control state]].[[coupling-control state]].)
  • Peer review  + ('''Peer reviews''' provide a critical asse'''Peer reviews''' provide a critical assessment of a manuscript prior to publication. Bioenergetics Communications publishes [https://www.bioenergetics-communications.org/index.php/bec/BECPolicies#Permanency_of_content.2C_peer-review_process.2C_and_Journal.27s_options_for_post-publication_discussions_and_corrections Open Peer Reviews] for transparency of the review process.s] for transparency of the review process.)
  • PeerJ Preprints 'pre-print' area of PeerJ  + ('''PeerJ Preprints''' is the 'pre-print' a'''PeerJ Preprints''' is the 'pre-print' area of the Open Access journal ''PeerJ''. Similar to preprint servers that already exist (for example arXiv.org), authors can submit draft, incomplete, or final versions of articles they are working on. By using this service, authors establish precedent; they can solicit feedback; and they can work on revisions of their manuscript. Once they are ready, they can submit their preprint article into ''PeerJ'' (although it is not a requirement to do so).</br></br>''PeerJ Preprints'' was launched in April 2013. It only accepts submissions in the same subject areas as ''PeerJ'' (biological, medical and environmental sciences) and ''PeerJ Computer Science''. In order to submit to ''PeerJ Preprints'', at least the submitting author must have a user account with ''PeerJ''. There is no pre-publication peer-review of submissions; however we do perform basic checks to ensure conformity with our policies. Submissions are made using the same platform as with the peer-reviewed journals, although some of the requirements are less stringent. Articles are not typeset, but we do provide automated conversion into PDF. The default is for a ''PeerJ Preprints'' publication to be fully open to all viewers (what we call a 'public' pre-print).</br></br>'''PeerJ''' is an Open Access, peer-reviewed, scholarly journal. It considers and publishes research articles in the biological, medical and environmental sciences. It aims for rapid decision making and will publish articles as soon as they are ready. ''PeerJ'' is based in both San Diego, US, and London, UK.sed in both San Diego, US, and London, UK.)
  • Perfluorooctanoic acid  + ('''Perfluorooctanoic acid''' (PFOA) is a metabolically inert perfluorinated fatty acid which activates [[UCP1]] in brown-fat mitochondria. UCP1-dependent respiration can be stimulated with 600 μM PFOA after inhibition of the phosphorylation system.)
  • Performance Estimation  + ('''Performance estimation''')
  • PBMC  + ('''Peripheral blood mononuclear cells''' ('''Peripheral blood mononuclear cells''' (PBMC) are a fraction of the leucocyte population in the blood composed by cells with round nucleus. PBMC consist of lymphocytes (T, B and NK cells) and monocytes. During extraction, neutrophils and platelets (PLT) can be found in the PBMC fraction, where PLT are considered as a contamination.ere PLT are considered as a contamination.)
  • Permeabilized cells  + ('''Permeabilized cells''' (pce) are mitoch'''Permeabilized cells''' (pce) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane (e.g., with [[digitonin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>'''Permeabilized cells''' (pce) are, therefore, not any longer viable or [[living cells]] (ce), since the intactness of cells implies the intactness of the plasma membrane. Any typical quantiative cell viability test (trypan blue etc) evaluating the intactness of the plasma membrane, yields a 100% negative result on fully permeabilized cells.</br></br>For permeabilizing the cell plasma membranes chemically with [[digitonin]], without damaging the [[mitochondrial|mt]]-membranes, the optimum concentration of digitonin must be previously determinated. The protocol [[SUIT-010]] is designed for the evaluation of optimum digitonin concentration for permeabilizing cells, a requirement to account for differences between cell types, the concentration of cells, and variability between batches of the natural product digitonin. batches of the natural product digitonin.)
  • Permeabilized muscle fibers  + ('''Permeabilized muscle fibers''' (pfi) ar'''Permeabilized muscle fibers''' (pfi) are used as a mitochondrial preparation in respirometry to access mitochondrial function comparable to [[isolated mitochondria]] (imt). pfi are obtained by selectively permeabilizing the plasma membrane mechanically and chemically ([[saponin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>:» MitoPedia topic: [[Mitochondrial preparations]][Mitochondrial preparations]])
  • Permeabilized tissue or cells  + ('''Permeabilized tissue''' ([[Permeabilized tissue|pti]]'''Permeabilized tissue''' ([[Permeabilized tissue|pti]], see also [[permeabilized muscle fibers]], pfi) or cells ([[Permeabilized cells|pce]]) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane mechanically or [[permeabilization of plasma membrane|chemically]], for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>'''Permeabilized cells''' (pce) are, therefore, not any longer viable or [[living cells]] (ce), since the intactness of cells implies the intactness of the plasma membrane. Any typical quantiative cell viability test (trypan blue etc) evaluating the intactness of the plasma membrane, yields a 100% negative result on fully permeabilized cells.ative result on fully permeabilized cells.)
  • Permeabilized tissue  + ('''Permeabilized tissue''' (pti, see also '''Permeabilized tissue''' (pti, see also [[permeabilized muscle fibers]], pfi) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane mechanically or chemically (e.g., with [[saponin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.[[mitochondrial|mt]]-membranes.)
  • Peroxisome proliferator-activated receptor gamma coactivator 1-alpha  + ('''Peroxisome proliferator-activated recep'''Peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1α''' (PGC-1α) is a protein which functions as an inducible transcriptional coactivator, a coregulator of transcription factors, particularly [[NRF-1]] and [[TFAM]]. PGC-1α was first described in 1998 ([[Puigserver 1998 Cell]]). PGC-1α drives the formation of slow-twich muscle fibres ([[Lin 2002 Nature]]) and is increased upon endurance training ([[Norrbom 2004 J Appl Physiol]]). PGC-1α expression is inhibited by the proinflammatory cytokine tumor necrosis factor α (TNF-α) and high levels of leptin. Upregulation of PGC-1α expression is induced by increased [[eNOS]] activity -> [[MiPNet15.05_NO-manual|NO]] -> [[guanylate cyclase]] -> [[cGMP]] ([[Nisoli 2007 Circ Res]]). AMP-activated protein kinase (AMPK) increases PGC-1α expression through SIRT1 ([[Canto 2009 Nature]]).9 Nature]]).)
  • Phenylsuccinate  + ('''Phenylsuccinate''' is a competitive inhibitor of succinate transport (20 mM).)
  • Phosphocreatine  + ('''Phosphocreatine''' is a high energy compound in the skeletal muscle of vertebrates and is present in 4 to 5 times the concentration of ATP.)
  • Phosphoenolpyruvate carboxykinase  + ('''Phosphoenolpyruvate carboxykinase''' (P'''Phosphoenolpyruvate carboxykinase''' (PEPCK) catalyzes the anabolic reaction of [[oxaloacetate]] (Oxa) to [[phosphoenolpyruvate]] at the expense of GTP. PEPCK is a cytoplasmatic enzyme involved in gluconeogenesis in mouse and rat liver, but 'is found in the mitochondria in the rabbit and chicken, and in both cytoplasm and mitochondria in the guinea pig' ([[Lehninger 1970 Worth Publishers |Lehninger 1970]]). In many anoxia-resistant animals, PEPCK plays an important catabolic role under severe hypoxia and anoxia at the PEPCK branchpoint ([[Hochachka 2002 Oxford Univ Press |Hochachka, Somero 2002)]], feeding malate into the reversed TCA cycle: malate is dismutated to pyruvate catalyzed by [[malic enzyme]] in the oxidative direction, and to fumarate in the reductive direction, leading to formation of succinate and ATP under anoxia ([[Gnaiger 1977 Invertebrate anoxibiosis |Gnaiger 1977]]).[[Gnaiger 1977 Invertebrate anoxibiosis |Gnaiger 1977]]).)
  • Phosphorescence  + ('''Phosphorescence''' is a similar phenome'''Phosphorescence''' is a similar phenomenon to [[fluorescence]]. However, instead of the electron returning to its original energy state following excitation, it decays to an intermediate state (with a different spin value) where it can remain for some time (minutes or even hours) before decaying to its original state. Phosphorescence is one form of [[Luminescence]], especially Photoluminescence.[[Luminescence]], especially Photoluminescence.)
  • PhotoBiology  + ('''PhotoBiology''' is the science of the e'''PhotoBiology''' is the science of the effect of light on biological processes. This includes [[photosynthesis]], photochemistry, photophysics, photomorphogenesis, vision, bioluminescence, circadian rhythms and photodynamic therapy. Phototoxicity results from non-ionizing radiation (i.e. ultraviolet, visible and infrared radiation). Non-ionizing radiation is any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy below 10 eV) to completely remove an electron from an atom or molecule. When photons interact with molecules, the molecules can absorb the photon energy and become excited, reacting with surrounding molecules and stimulating "photochemical" and "photophysical" changes. Respiration may be affected by light during photosynthesis or in dark respiration, with the transient response of [[light-enhanced dark respiration]].[[light-enhanced dark respiration]].)
  • Photodecomposition  + ('''Photodecomposition''' or photodegradati'''Photodecomposition''' or photodegradation is the process of decay of organic material induced by increasing light intensity. Under aerobic conditions, the enhancement of photodecomposition by light intensity can be quantified by oxygen consumption in a controlled light regime. consumption in a controlled light regime.)
  • Photodiode arrays  + ('''Photodiode arrays''' are two dimensiona'''Photodiode arrays''' are two dimensional assemblies of [[photodiodes]]. They are frequently used in conjunction with charge coupled devices (CCDs) for digital imaging. They can be used in combination with [[dispersion devices]] to detect wavelength dependent light intensities in a [[spectrofluorometer]] or [[spectrophotometer]].[[spectrophotometer]].)