Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "A '''norm''' is a rule that is enforced by members of a community.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 26 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Stand alone application  + (A '''Stand alone application''' is computer software that can work offline, i.e. does not necessarily require network connection to function or does not even provide the possibility to connect to a network.)
  • Upper O2 limit - DatLab  + (A '''Upper O2 limit [µM]''' can be defined for each O2k-chamber, to trigger an automatic warning when the experimental O<sub>2</sub> concentration rises beyond this limit.)
  • Web application  + (A '''Web application''' is a computer software where the [[user interface]] gets accessed by the user through a web browser.)
  • Canonical ensemble  + (A '''canonical ensemble''' is the group ofA '''canonical ensemble''' is the group of compartments enclosed in an isolated system '''H''', with a smaller compartment A<sub>1</sub> in thermal equilibrium with a larger compartment A<sub>2</sub> which is the heat reservoir at temperature ''T''. When A<sub>1</sub> is large in the canonical sense, if its state can be described in terms of macroscopic thermodynamic quantities of ''V'', ''T'', and ''p'' merging with the state described as a probability distribution.T'', and ''p'' merging with the state described as a probability distribution.)
  • Closed system  + (A '''closed system''' is a system with bouA '''closed system''' is a system with boundaries that allow external exchange of energy (heat and work), but do not allow exchange of matter. A limiting case is light and electrons which cross the system boundary when work is exchanged in the form of light or electric energy. If the surroundings are maintained at constant temperature, and heat exchange is rapid to prevent the generation of thermal gradients, then the closed system is isothermal. A frequently considered case are closed isothermal systems at constant pressure (and constant volume with aqueous solutions). Changes of closed systems can be partitioned according to internal and external sources. Closed systems may be homogenous (well mixed and isothermal), continuous with gradients, or [[Discontinuous system|discontinuous]] with compartments (heterogenous).[[Discontinuous system|discontinuous]] with compartments (heterogenous).)
  • Coenzyme  + (A '''coenzyme''' or cosubstrate is a [[cofactor]]A '''coenzyme''' or cosubstrate is a [[cofactor]] that is attached loosely and transiently to an enzyme, in contrast to a [[prosthetic group]] that is attached permanently and tightly. The coenzyme is required by the corresponding enzyme for its activity (IUPAC definition). A coenzyme is 'a low-molecular-weight, non-protein organic compound participating in enzymatic reactions as dissociable acceptor or donor of chemical groups or electrons' (IUPAC definition).l groups or electrons' (IUPAC definition).)
  • Cofactor  + (A '''cofactor''' is 'an organic molecule or ion (usually a metal ion) that is required by an enzyme for its activity. It may be attached either loosely ([[coenzyme]]) or tightly ([[prosthetic group]])' (IUPAC definition).)
  • Coupling-control protocol  + (A '''coupling-control protocol CCP''' induA '''coupling-control protocol CCP''' induces different [[coupling control state]]s at a constant [[electron-transfer-pathway state]]. [[Residual oxygen consumption]] (''Rox'') is finally evaluated for ''Rox'' correction of flux. The CCP may be extended, when further respiratory states (e.g. cell viability test; CIV assay) are added to the coupling control module consisting of three coupling control states. The term '''phosphorylation control protocol''', PCP, has been introduced synonymous for CCP.</br>» [[Coupling_control_protocol#From_PCP_to_CCP |'''MiPNet article''']][Coupling_control_protocol#From_PCP_to_CCP |'''MiPNet article''']])
  • Dataset  + (A '''dataset''' is a collection of data. In the context of databases a dataset represents the collection of entries in a database-table. In this table columns represent [[Attribute|attributes]] and rows display the according values of the entries.)
  • Decimal marker and spaces between groups of numerals  + (A '''decimal marker''' is used to separateA '''decimal marker''' is used to separate the integral part of numbers from the decimal part. The SI recommends: "the symbol for the decimal marker shall be either the point on the line or the comma on the line". In English language versions, the dot (point on the line) should be used uniquely as the decimal marker. To avoid ambiguities, BEC follows the SI recommendation that “Numbers may be divided in groups of three in order to facilitate reading; neither dots nor commas are ever inserted in the spaces between groups” (pages 183-184).he spaces between groups” (pages 183-184).)
  • Detector  + (A '''detector''' is a device that convertsA '''detector''' is a device that converts the light falling upon it into a current or voltage that is proportional to the light intensity. The most common devices in current use for [[fluorometry]] and [[spectrophotometry]] are [[photodiodes]] and [[photodiode arrays]].[[photodiode arrays]].)
  • Difference spectrum  + (A '''difference spectrum''' is an [[absorbance spectrum]]A '''difference spectrum''' is an [[absorbance spectrum]] obtained by subtracting that of one substance from that of another. For example, a '''difference spectrum''' may be plotted of the [[absorbance spectrum]] obtain ed from reduced [[cytochrome c]] and subtracting the [[absorbance spectrum]] from the same concentration of [[cytochrome c]] in its oxidised state. The [[difference spectrum]] may be used to quantify the amount to which the [[cytochrome c]] is reduced. This can be achieved with the aid of a [[reference spectrum]] (or spectra) and the [[least squares method]].[[least squares method]].)
  • Directive  + (A '''directive''' is a legal act of the European Union, which requires member states to achieve a particular result without dictating the means of achieving that result.)
  • Dispersion devices  + (A '''dispersion device''' diffracts light A '''dispersion device''' diffracts light at different angles according to its wavelength. Traditionally, prisms and [[diffraction gratings]] are used, the latter now being the most commonly used device in a [[spectrofluorometer]] or [[spectrophotometer]].[[spectrophotometer]].)
  • Fluorophore  + (A '''fluorophore''' is a fluorescent substA '''fluorophore''' is a fluorescent substance that may occur naturally ([[intrinsic fluorophores]]) or that may be added to a sample or preparation whereby the fluorescence intensity is proportional to the concentration of a specific species or parameter within the sample. These are [[extrinsic fluorophores]], also referred to as fluorescent markers., also referred to as fluorescent markers.)
  • Free radicals  + (A '''free radical''' is any atom or molecuA '''free radical''' is any atom or molecule that contains one or more unpaired electrons in an orbital. The degree of chemical reactivity depends on the localization of unpaired electrons. Free radicals are extremely reactive, and they can either donate or accept an electron from other molecules. Free radicals that include oxygen radicals and derivatives of oxygen are [[reactive oxygen species]] (ROS). Likewise, [[reactive nitrogen species]] (RNS) are nitric oxide-derived compounds. ROS/RNS include oxygen/nitrogen free radicals and non-radicals that are easily converted into radicals. Mitochondria are a main endogenous source of free radicals in cells and consequently are exposed to oxidative-nitrosative damage. Electron transfer in the electron transfer-pathway (ET-pathway) is not perfect, leading an electron leakage. This electron leakage permits the formation of ROS such as [[superoxide]] anion (O2•−), [[hydrogen peroxide]] (H<sub>2</sub>O<sub>2</sub>) and the hydroxyl radical (HO•)./sub>O<sub>2</sub>) and the hydroxyl radical (HO•).)
  • Harmonized standard  + (A '''harmonized standard''' is a European [[standard]] developed by a recognized European Standards Organisation: CEN, CENELEC, or ETSI.)
  • Healthy reference population  + (A '''healthy reference population''', HRP,A '''healthy reference population''', HRP, establishes the baseline for the relation between body mass and height in healthy people of zero underweight or overweight, providing a reference for evaluation of deviations towards underweight or overweight and obesity. The WHO Child Growth Standards (WHO-CGS) on height and body mass refer to healthy girls and boys from Brazil, Ghana, India, Norway, Oman and the USA. The Committee on Biological Handbooks compiled data on height and body mass of healthy males from infancy to old age (USA), published before emergence of the fast-food and soft-drink epidemic. Four allometric phases are distinguished with distinct allometric exponents. At heights above 1.26 m/x the allometric exponent is 2.9, equal in women and men, and significantly different from the exponent of 2.0 implicated in the body mass index, BMI [kg/m<sup>2</sup>].e body mass index, BMI [kg/m<sup>2</sup>].)
  • High signal at zero oxygen  + (A '''high signal at zero oxygen''' may be A '''high signal at zero oxygen''' may be observed during [[zero calibration]] (R0). First, check the quality of the [[dithionite]] solution. The following instructions show how to distinguish between a defective sensor head and an electrical leak current.ensor head and an electrical leak current.)
  • Light-emitting diode  + (A '''light-emitting diode''' (LED) is a liA '''light-emitting diode''' (LED) is a light source (semiconductor), used in many every-day applications and specifically in [[fluorometry]]. LEDs are available for specific spectral ranges across wavelengths in the [http://en.wikipedia.org/wiki/Light-emitting_diode#Colors_and_materials visible, ultraviolet, and infrared range].visible, ultraviolet, and infrared range].)
  • Measurement process  + (A '''measurement process''' or a '''measurement''' is a set of operations to determine the value of a [[quantity]].)
  • Measuring equipment  + (A '''measuring equipment''' is a measuring instrument, software, measurement standard, reference material or auxiliary apparatus, or a combination thereof, necessary to realize a measurement process.)
  • Medical device  + (A '''medical device''' is an instrument, aA '''medical device''' is an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is (1) intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or (2) intended to affect the structure or any function of the body of man or other animals, and which does not achieve any of its primary intended purposes through chemical action within or on the body of man or other animals and which is not dependent upon being metabolized for the achievement of any of its primary intended purposes.t of any of its primary intended purposes.)
  • Metabolic control variable  + (A '''metabolic control variable''' ''X'' cA '''metabolic control variable''' ''X'' causes the transition between a [[background state]] Y (background rate ''Y<sub>X</sub>'') and a [[reference state]] Z (reference rate ''Z<sub>X</sub>''). ''X'' may be a stimulator or activator of flux, inducing the step change from background to reference steady state (Y to Z). Alternatively, ''X'' may be an inhibitor of flux, absent in the reference state but present in the background state (step change from Z to Y).ate but present in the background state (step change from Z to Y).)
  • Model  + (A '''model''' regarding databases is the representation of a real world object in a computer understandable language. A '''model''' can be defined by the structure of its [[dataset]] and the relations to other '''models'''.)
  • Norm  + (A '''norm''' is a rule that is enforced by members of a community.)
  • Number  + (A '''number''' ''N'' is a [[count]]A '''number''' ''N'' is a [[count]] ''N''<sub>''X''</sub> [x] divided by the [[elementary entity]] ''U''<sub>''X''</sub> [x]. ''X'' must represent the same entity in both occurences. The elementary unit [x] cancels in the division by simplification, such that numbers (for example, numbers 8 or 24) are abstracted from the counted entity ''X''. The concept of number is tightly entangled with units, counts and entities.pt of number is tightly entangled with units, counts and entities.)
  • Numeral  + (A '''numeral''' is the symbol representingA '''numeral''' is the symbol representing a specific [[number]]. A numeral is the figure of a number, with different notation types used as a figure (VIII and 8 for Roman and Arabic numerals; 八 and 捌 for practical and financial Chinese). A numeral may consist of one or more characters or digits. 60 and 60.00 are different numerals consisting of two and four digits, respectively, which represent the same number sixty. Sixty is the name of the number 60, with the meaning 'number 60'. ''N'' is not a numeral but a symbol representing the entity 'number'. The equation ''N''=60 assignes the numerical value 60 to the entity 'number'. The numeral 60 is a symbol for a pure number that equals 6 times 10 (or 2 times 30; or 1 times 60).6 times 10 (or 2 times 30; or 1 times 60).)
  • Plot - DatLab  + (A '''plot''' in DatLab represents a specific [[O2k signals and output|channel]] in the graph. To change the [[Layout for DatLab graphs]] go to [Graph]/'''[[Select plots - DatLab |Select plots]]''' to open the '''Graph layout''' window.)
  • Polarization voltage  + (A '''polarization voltage''' of 600 mV to A '''polarization voltage''' of 600 mV to 800 mV is applied between anode and cathode of the [[polarographic oxygen sensor]], resulting in a current when oxygen is consumed. The current is converted by the electronics to a voltage (raw signal) which must not be confused with the polarization voltage.be confused with the polarization voltage.)
  • Population  + (A '''population''' (or '''group''') defines the [[sample type]] of an [[experiment]], before sample preparation. The population (or group) size represents the upper limit of the [[sample size]], ''N''.)
  • Preprint  + (A '''preprint''' is {''Quote''} a way in wA '''preprint''' is {''Quote''} a way in which a manuscript containing scientific results can be rapidly communicated from one scientist, or a group of scientists, to the entire scientific community {''end of Quote''}. Preprints are disseminated without peer review, e.g. in the preprint server [[MitoFit Preprints]]. In contrast, the journal [[Bioenergetics Communications]] publishes peer-reviewed articles, which preferentially are communicated in advance in MitoFit Preprints.municated in advance in MitoFit Preprints.)
  • Product  + (A '''product''' in a chemical reaction has a positive [[stoichiometric number]] since it is produced, whereas a [[substrate]] has a negative stoichiometric number since it is consumed.)
  • Prosthetic group  + (A '''prosthetic group''' is a [[cofactor]]A '''prosthetic group''' is a [[cofactor]] that is attached permanently and tightly or even covalently to an enzyme and that is regenerated in each enzymatic turnover. Thus a prostethic group is distinguished from a [[coenzyme]] or cosubstrate that is attached loosely and transiently. Like a coenzyme, the prosthetic group is required by an enzyme for its activity. A prosthetic group is 'a tightly bound, specific nonpolypeptide unit in a protein determining and involved in its biological activity' (IUPAC definition).</br></br>FMN/FMNH<sub>2</sub> and FAD/FADH<sub>2</sub> are prosthetic groups of [[Complex I]] and [[Complex II]], respectively.[[Complex II]], respectively.)
  • Quantity  + (A '''quantity''' is the attribute of a pheA '''quantity''' is the attribute of a phenomenon, body or substance that may be distinguished qualitatively and determined quantitatively. A [[dimension |dimensional]] quantity is a number (variable, parameter, or constant) connected to its dimension, which is different from 1. {''Quote''} The value of a quantity is generally expressed as the product of a number and a unit. The unit is simply a particular example of the quantity concerned which is used as a reference, and the number is the ratio of the value of the quantity to the unit. {''end of Quote'': Bureau International des Poids et Mesures 2019 The International System of Units (SI), p. 127)}.ernational System of Units (SI), p. 127)}.)
  • Reference spectrum  + (A '''reference spectrum''' for a substance is an [[absorbance spectrum]] of the same substance at a known concentration and [[redox state]].)
  • Requirement  + (A '''requirement''' is a singular documented physical or functional need that a particular design, product or process must be able to perform.)
  • Sample  + (A '''sample''' is one or more parts taken A '''sample''' is one or more parts taken from an ensemble that is studied. A sample is either stored for later quantification or prepared and possibly separated into subsamples, which are enclosed in a system for qualitative or quantitative investigation. A pure sample S is a pure gas, pure liquid or pure solid of a defined elementary [[entity]]-type. A pure biological sample is a cell type, tissue, or organism without its solid, liquid or gaseous environment. Then the system used to investigate sample S contains only entities of entity-type S, and the [[volume]] ''V''<sub>S</sub> [L] and [[mass]] ''m''<sub>S</sub> [kg] of the pure (sub)sample S are identical to the volume ''V'' and mass ''m'' of the experimental [[system]]. A pure sample S may be mixed with other components to be investigated as a solution, mixture, or suspension, indicated by the symbol s in contrast to the pure sample S. A sample s is obtained in combination with other components, such that the [[volume]] ''V''<sub>s</sub> [L] and [[mass]] ''m''<sub>s</sub> [kg] of the sample s are larger than the volume ''V''<sub>S</sub> and mass ''m''<sub>S</sub> of the pure sample S. For example, the number of cells ''N''<sub>ce</sub> [Mx] can be counted in a sample s of a cell suspension, whereas the mass ''m''<sub>ce</sub> [mg] of cells requires a pure sample S of cells to be measured on a mass-balance. Clarity of statistical representation is improved, if the symbol ''N'' is used for the number of [[primary sample]]s taken from a study group, and the symbol ''n'' is used for the number of subsamples studied as technical repeats.[[primary sample]]s taken from a study group, and the symbol ''n'' is used for the number of subsamples studied as technical repeats.)
  • Scalar  + (A '''scalar''' is a pysicochemical quantitA '''scalar''' is a pysicochemical quantity that is fully described by its magnitude. A potential difference, differences of concentration or pressure are scalars, whereas a potential gradient is a [[vector]]. Similarly, the [[protonmotive force]] and metabolic oxygen [[flux]] are scalars, whereas the fundamental [[force]]s of physics and [[velocity]] are vectors.[[velocity]] are vectors.)
  • Solutions  + (A '''solution''' is {''Quote''}: A liquid A '''solution''' is {''Quote''}: A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes. When, as is often but not necessarily the case, the sum of the mole fractions of solutes is small compared with unity, the solution is called a dilute solution. A superscript attached to the ∞ symbol for a property of a solution denotes the property in the limit of infinite dilution {''end of Quote'': [http://goldbook.iupac.org/S05746.html IUPAC Gold Book]}.</br>[[Solutions#Stock-.2C_storage-_and_working-solutions:_How_do_they_differ.3F |» '''MiPNet article''']]Solutions#Stock-.2C_storage-_and_working-solutions:_How_do_they_differ.3F |» '''MiPNet article''']])
  • Spectrofluorometer  + (A '''spectrofluorometer''' makes use of a A '''spectrofluorometer''' makes use of a [[spectrometer]] to measure and analyse the fluorescent emission spectra from a [[fluorophore]]. It will typically differ from an [[absorbance]] [[spectrophotometer]] in that it will have a larger [[slit width]] (to increase [[sensitivity]]) and use a longer [[integration time]]. The configuration of the illuminating and receiving optics also differ from [[spectrophotometry]] in that the excitation source is directed perpendicularly to the position of the emission [[detector]] so that the intensity of the excitation signal reaching the [[detector]] is minimised.[[detector]] is minimised.)
  • Spectrophotometer  + (A '''spectrophotometer''' is an instrumentA '''spectrophotometer''' is an instrument that consists of an entrance slit, a dispersion device (see [[dispersion devices]] and a [[detector]] for the purpose of measuring the intensity of light emerging from a sample across a given wavelength range. A [[light source]] is also necessary in order for the instrument to function, and this may be located within the instrument or from an external source using [[lightguides]] or other [[optics]].[[optics]].)
  • Standard  + (A '''standard''' is an established [[norm]] or [[requirement]] in regard to a defined system. It can consist of a formal document that establishes uniform criteria, methods, processes and practices.See also [[Harmonized standard]].)
  • Stirrer test  + (A '''stirrer test''' is performed in the [[Oroboros O2k]]A '''stirrer test''' is performed in the [[Oroboros O2k]] for quick evaluation of the performance of the [[OroboPOS]] and for [[POS calibration - dynamic|dynamic calibration]]. Stirring is stopped in both chambers and restarted after a selected period. The default period is 30 s, for experiments at 37 °C. At lower experimental temperature, this period should be prolonged (60 s at 25 °C). In the [[O2k-Open Support#O2k_Quality_Control |SOP (O2k Quality Control)]] for the [[O2k-Open_Support#1._O2_sensor_test|O<sub>2</sub> sensor test]], the stirrer test is performed in the 'open' chamber in conjunction with [[Air calibration]]. In general, the stirrer test can be performed equally with an open or closed chamber. Upon automatic re-start of the stirrer (On), the increase of the oxygen signal should be rapid and monoexponential.the oxygen signal should be rapid and monoexponential.)
  • Three-electrode system  + (A '''three-electrode system''' is the setuA '''three-electrode system''' is the setup used in the [[Q-Sensor]], which is an integral part of the [[Q-Module]]. This system is used in voltammetry (including [[cyclic voltammetry]]) to study the current as a function of the applied potential using three different electrodes: 1) the working electrode 2) the reference electrode, and 3) the counter electrode. In the [[Q-Sensor]], the working or detecting electrode is a glassy carbon (GC) electrode that is set to a given potential and makes contact with the analyte. The potential of the working electrode is controlled by the constant potential of the a silver/silver chloride (Ag/AgCl) reference electrode, which does not pass any current. The applied potential on the surface of the GC should be sufficient to either oxidize reduced analyte (in this case [[Coenzyme Q]]) or to reduce oxidized analyte. Thus, the counter electrode is a platinum electrode (Pt) that passes a current to counter these redox events by completing the circuit that is rate-limited by electron transfer on the GC. To determine the reduced Q fraction the GC electrode is set at the oxidation peak potential, which can be determined with [[cyclic voltammetry]].[[cyclic voltammetry]].)
  • Tissue homogenate  + (A '''tissue homogenate''' (thom) is obtained through mechanical micro-disruption of fresh tissue and the cell membranes are mechanically permeabilized.)
  • User code - DatLab  + (A '''user''' code or name is entered upon starting [[DatLab]]. This window pops up automatically after opening DatLab. Usernames are connected with personal [[Layout for DatLab graphs |graph layouts]].)
  • Vector  + (A '''vector''' is a pysicochemical quantitA '''vector''' is a pysicochemical quantity with magnitude and spatial direction of a [[gradient]]. Symbols for vectors are written in bold face. For example, [[velocity]], '''''v''''', and the fundamental [[force]]s of physics, '''''F''''', are vectors. An infinitesimal area is a vector, d'''''A''''', perpendicular to the plane. d'''''A''''', perpendicular to the plane.)
  • Working measurement standard  + (A '''working measurement standard''' is a standard that is used routinely to calibrate or check material measures, measuring instruments or reference materials [SOURCE: VIM:1993, 6.7].)
  • In vitro diagnostic medical device  + (A [[medical device]]A [[medical device]] is an '''in vitro diagnostic medical device (IVD)''' if it is a reagent, calibrator, control material, kit, specimen receptacle, software, instrument, apparatus, equipment or system, whether used alone or in combination with other diagnostic goods for in vitro use.h other diagnostic goods for in vitro use.)
  • Steady state  + (A [[system]]A [[system]] is in a '''steady state''' if the state variables of a dynamic system do not change over time due to exchange processes with the environment, which compensate for internal dissipative transformations — such as chemical reactions or diffusion — and thus prevent any changes of the system and externalize dissipative changes to the environment. The dynamic nature of the steady state differentiates it from the thermodynamic equilibrium state. {''Quote''} Steady states can be obtained only in [[open system]]s, in which changes by internal transformations, ''e.g.'', O<sub>2</sub> consumption, are instantaneously compensated for by external fluxes across the system boundary, ''e.g.'', O<sub>2</sub> supply, thus preventing a change of O<sub>2</sub> concentration in the system (Gnaiger 1993). Mitochondrial [[respiratory states]] monitored in [[closed system]]s satisfy the criteria of pseudo-steady states for limited periods of time, when changes in the system ([[concentration]]s of O<sub>2</sub>, fuel substrates, ADP, P<sub>i</sub>, H<sup>+</sup>) do not exert significant effects on metabolic fluxes (respiration, phosphorylation). Such pseudo-steady states require respiratory media with sufficient buffering capacity and substrates maintained at kinetically-saturating concentrations, and thus depend on the kinetics of the processes under investigation. {''end of Quote'': [[BEC 2020.1]]}. Whereas fluxes may change at a steady state over time, concentrations are maintained constant. The 'respiratory steady state' (Chance and Williams 1955) is characterized by constant fluxes (O<sub>2</sub> flux, H<sub>2</sub>O<sub>2</sub> flux) and measured variables of state (cytochrome redox states, Q redox state, NADH redox state, mitochondrial membrane potential). [[High-resolution respirometry]] allows for the measurement of several parameters (''e.g.'' O<sub>2</sub> flux, H<sub>2</sub>O<sub>2</sub> flux, mitochondrial membrane potential) at pseudo-steady states, when changes of [[concentration]]s in the [[closed system]] do not exert any control on fluxes. Combination with the [[TIP2k-Module| Titration-Injection microPump (TIP2k)]] allows operation with programmable titration regimes at steady-state ADP concentration (Gnaiger 2001), oxygen concentration (oxystat mode; Gnaiger et al 2000, Harrison et al 2015) or steady-state pH (pH-stat more), yielding an expanded flexibility in experimental design by combining the technical advantages of closed and [[open system]]s approaches.en system]]s approaches.)