Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "25<sup>th</sup> Krakow Conference on Endothelium, Krakow, Poland.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • SFRR 2018 Auckland NZ  + (26th Meeting for the Society for Free Radical Research Australasia SFRR(A), Auckland, New Zeland, 2018)
  • ECSS 2023 Paris FR  + (28<sup>th</sup> ECSS Congress, Paris, France, 2023)
  • 28th Congress of the Polish Physiological Society 2021 Virtual  + (28th Congress of the Polish Physiological Society, Virtual, 2021)
  • FEBS 2022 Mutters AT  + (2<sup>nd</sup> FEBS Workshop on Ageing and Regeneration, Mutters, Austria, 2022)
  • Cardiovascular Metabolic Disease 2015  + (2nd Annual Conference of the Prevention and Control of Cardiovascular Metabolic Disease, Wuhan, CN; post-conference workshop '''[[MiPNet20.11_IOC102_Wuhan | 102nd Oroboros O2k-Workshop]]'''.)
  • Mitochondria-Targeted Drug Development 2022 Boston US  + (2nd Annual Mitochondria-Targeted Drug Development, Boston MA, US, 2022.)
  • 2nd International Munich ROS Meeting 2018 Munich DE  + (2nd International Munich ROS Meeting, Munich, Germany, 2018)
  • 2nd Mitochondria Conference 2023 Lisbon PT  + (2nd Mitochondria Conference, Lisbon, Portugal, 2023.)
  • Pereira 2009 Biochem J  + (3-BrPA (3-bromopyruvate) is an alkylating … 3-BrPA (3-bromopyruvate) is an alkylating agent with antitumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular</br>carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 ΞΌMfor 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 ΞΌM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium.</br>Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were preincubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate</br>was used as the oxidizable substrate. An increase in oligomycinindependent</br>respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity</br>of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3- BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.lay an important role in HepG2 cell death.)
  • Jardim-Messeder 2012 Int J Biochem Cell Biol  + (3-Bromopyruvate (3BrPA) is an antitumor ag … 3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca<sup>2+</sup>) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca<sup>2+</sup>-uptake activity was significantly inhibited by 80% with 150ΞΌM 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA.hiolation mediated by GSH at a critical Cys residues of the SERCA.)