Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''International Oxygraph Course''' (IOC), see [[O2k-Workshops]].". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • ISO 17511:2003 In vitro diagnostic medical devices  + ('''ISO 17511:2003 In vitro diagnostic medi'''ISO 17511:2003 In vitro diagnostic medical devices -- Measurement of quantities in biological samples -- Metrological traceability of values assigned to calibrators and control materials''': For measurements of quantities in laboratory medicine, it is essential that the quantity is adequately defined and that the results reported to the physicians or other health care personel and patients are adequately accurate (true and precise) to allow correct medical interpretation and comparability over time and space.ion and comparability over time and space.)
  • ISO 9001:2015 Quality management systems - requirements  + ('''ISO 9001:2015 Quality management system'''ISO 9001:2015 Quality management systems - requirements''': The adoption of a quality management system is a strategic decision for an organization that can help to improve its overall performance and provide a sound basis for sustainable development initiatives. Consistently meeting requirements and addressing future needs and expectations poses a challenge for organizations in an increasingly dynamic and complex environment. To achieve this objective, the organization might find it necessary to adopt various forms of improvement in addition to correction and continual improvement, such as breakthrough change, innovation and re-organization.gh change, innovation and re-organization.)
  • ISO/IEC 17025:2005 Competence of testing and calibration laboratories  + ('''ISO/IEC 17025:2005 General requirements'''ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories''': The use of this International Standard will facilitate cooperation between laboratories and other bodies, and assist in the exchange of information and experience, and in the harmonization of standards and procedures. This International Standard specifies the general requirements for the competence to carry out tests and/or calibrations, including sampling. It covers testing and calibration performed using standard methods, non-standard methods, and laboratory-developed methods.methods, and laboratory-developed methods.)
  • ISO/IEC 17043:2010 General requirements for proficiency testing  + ('''ISO/IEC 17043:2010 Conformity assessmen'''ISO/IEC 17043:2010 Conformity assessment — General requirements for proficiency testing''': The use of interlaboratory comparisons is increasing internationally. This International Standard provides a consistent basis to determine the competence of organizations that provide proficiency testing.izations that provide proficiency testing.)
  • Iconic symbols  + ('''Iconic symbols''' are used in [[ergodynamics]]'''Iconic symbols''' are used in [[ergodynamics]] to indicate more explicitely — compared to standard SI or IUPAC symbols — the quantity represented and some boundary conditions. This is particularly the case in normalized quantities (ratios of quantities). Iconic (or canonical) symbols help to clarify the meaning, are based on SI and IUPAC symbols as far as possible, and may be translated into more commonly used, practical symbols. Several ambiguities in SI and IUPAC symbols are eliminated by the systematic structure of iconic symbols, but it may be impossible to avoid all ambiguities, particulary when long (canonical) symbols are abbreviated in a particular context. Clarity is improved always by showing the unit of a quantity together with the symbol of the quantity. Iconic symbols cannot be identical with IUPAC symbols when a different definition is used — this would add to the confusion. For example, the IUPAC symbols ''n''<sub>B</sub> [mol] and ''V''<sub>B</sub> [m<sup>3</sup>] denote amount and volume of B. Consequently, it should be expected, that the symbol ''Q''<sub>B</sub> indicates charge of B [C]. However, the IUPAC symbol ''Q''<sub>B</sub> is used for particle charge per ion B [C·x<sup>-1</sup>]. This prohibits a consistent definition of ''Q''<sub>B</sub> as a potential iconic symbol for charge carried by a given quantity of ions B with unit [C], instead of particle charge per ion B with unit [C·x<sup>-1</sup>]. Hence, the conventional ambigous system forces compatible iconic symbols to be more complicated, using ''Q''<sub>elB</sub> [C] and ''Q''<sub>''<u>N</u>''B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.'B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.)
  • Impact factor  + ('''Impact factor''' is a measure of a scie'''Impact factor''' is a measure of a scientific journal's citations per publication. The Journal Citation Reports, maintained by Clarivate Analytics, provides the calculated impact factors. The IF is frequently used as an indicator of a journal's importance or prestige, which is nowadays increasingly contested. which is nowadays increasingly contested.)
  • Inorganic phosphate  + ('''Inorgnic phosphate''' (P<sub>i</sub>) is a salt of phosphoric acid. In solution near physiological pH, the species HPO<sub>4</sub><sup>2-</sup> and H<sub>2</sub>PO<sub>4</sub><sup>-</sup> dominate. ''See also'': [[Phosphate carrier]] (Pic).)
  • Oxygen flux - instrumental background  + ('''Instrumental background oxygen flux''','''Instrumental background oxygen flux''', ''J''°<sub>O<sub>2</sub></sub>, in a respirometer is due to oxygen consumption by the [[POS]], and oxygen diffusion into or out of the aqueous medium in the [[O2k-chamber]]. It is a property of the instrumental system, measured in the range of experimental oxygen levels by a standardized instrumental O<sub>2</sub> background test. The oxygen regime from air saturation towards zero oxygen is applied generally in experiments with isolated mitochondria, and living or permeabilized cells. To overcome oxygen diffusion limitation in permeabilized fibers and homogenates, an elevated oxygen regime is applied, requiring instrumental background test in the same range of elevated oxygen., requiring instrumental background test in the same range of elevated oxygen.)
  • Integration time  + ('''Integration time''' is the time taken t'''Integration time''' is the time taken to scan a single full range spectrum using [[photodiode arrays]]. It is equivalent to the exposure time for a camera. The shortest integration time defines the fastest response time of a [[spectrophotometer]]. Increasing the integration time increases the [[sensitivity]] of the device. The [[white balance]] or [[balance]] and subsequent measurements must always be carried out at the same integration time. carried out at the same integration time.)
  • Internal-energy  + ('''Internal-energy''', ''U'' [J], can neit'''Internal-energy''', ''U'' [J], can neither be destroyed nor created (first law of thermodynamics: d<sub>i</sub>''U''/d''t'' = 0). Note that ''internal'' (subscript i), as opposed to ''external'' (subscript e), must be distinguished from "internal-energy", ''U'', which contrasts with "[[Helmholtz energy]]", ''A'', as [[enthalpy]], ''H'', contrasts with Gibbs energy, ''G''.[[enthalpy]], ''H'', contrasts with Gibbs energy, ''G''.)
  • Ionomycin  + ('''Ionomycin''' (Imy) is a ionophore used to raise intracellular [Ca<sup>2+</sup>].)
  • Isocitrate dehydrogenase  + ('''Isocitrate dehydrogenase''' forms 2-oxoglutarate from isocitrate in the [[TCA cycle]].)
  • Isolated mitochondria  + ('''Isolated mitochondria''', imt, are mitochondria separated from a tissue or cells by breaking the plasma membranes and attachments to the cytoskeleton, followed by centrifugation steps to separate the mitochondria from other components.)
  • Journal indexing  + ('''Journal indexing''' allows publications to be found on search tools/databases. Each database might have different criteria of inclusion.)
  • Keywords-MitoPedia in BEC  + ('''Keywords—MitoPedia''' is the concept to'''Keywords—MitoPedia''' is the concept to link keywords in articles published in [[Bioenergetics Communications]] (BEC) to [[MitoPedia]] terms. Authors should consider the message in the selected keywords. Provide consistent definitions of your keywords by linking them to MitoPedia. Extend MitoPedia entries critically by your contributions. The BEC editorial team will hyperlink your keywords with MitoPedia, and a reference to your BEC publication will be generated automatically from the MitoPedia term to your publication. With your contributions, BEC elevates keywords to terms with meaning. Your article gains visibility.th meaning. Your article gains visibility.)
  • Kynurenine hydroxylase  + ('''Kynurenine hydroxylase''' (kynurenine 3'''Kynurenine hydroxylase''' (kynurenine 3-monooxygenase) is located in the outer mitochondrial membrane. Kynurenine hydroxylase catalyzes the chemical reaction: L-kynurenine + NADPH + H<sup>+</sup> + O<sub>2</sub> ↔ 3-hydroxy-L-kynurenine + NADP<sup>+</sup> + H<sub>2</sub>O</br>Kynurenine hydroxylase belongs to the family of oxidoreductases acting on paired donors, with O<sub>2</sub> as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O<sub>2</sub> with [[NADH]] or [[NADPH]] as one donor, and incorporation of one atom of oxygen into the other donor. This enzyme participates in tryptophan metabolism. It employs one cofactor, [[FAD]].FAD]].)
  • Laboratory titration sheet  + ('''Laboratory titration sheet''' contains '''Laboratory titration sheet''' contains the sequential titrations in a specific Substrate-uncoupler-inhibitor titration (SUIT) protocol. The laboratory titration sheets for different SUIT protocols are incorporated in DatLab (DL7.1): [[Protocols in DatLab]][[Protocols in DatLab]])
  • Lactate dehydrogenase  + ('''Lactate dehydrogenase''' is a glycolytic marker enzyme in the cytosol, regenerating NAD<sup>+</sup> from NADH and pyruvate, forming lactate.)
  • Length  + ('''Length''' ''l'' is an SI base quantity '''Length''' ''l'' is an SI base quantity with SI base unit [[meter]] m. Quantities derived from length are [[area]] ''A'' [m<sup>2</sup>] and [[volume]] ''V'' [m<sup>3</sup>]. Length is an extensive quantity, increasing additively with the number of objects. The term 'height' ''h'' is used for length in cases of vertical position (see [[height of humans]]). Length of height per object, ''L''<sub>''U''<sub>''X''</sub></sub> [m·x<sup>-1</sup>] is length per unit-entity ''U''<sub>''X''</sub>, in contrast to lentgth of a system, which may contain one or many entities, such as the length of a pipeline assembled from a number ''N''<sub>''X''</sub> of individual pipes. Length is a quantity linked to direct sensory, practical experience, as reflected in terms related to length: long/short (height: tall/small). Terms such as 'long/short distance' are then used by analogy in the context of the more abstract quantity [[time]] (long/short duration).[time]] (long/short duration).)
  • Light-enhanced dark respiration  + ('''Light-enhanced dark respiration''' ''LE'''Light-enhanced dark respiration''' ''LEDR'' is a sharp (negative) maximum of dark respiration in plants in response to illumination, measured immediately after switching off the light. ''LEDR'' is supported by respiratory substrates produced during photosynthesis and closely reflects light-enhanced [[photorespiration]] (Xue et al 1996). Based on this assumption, the total photosynthetic oxygen flux ''TP'' is calculated as the sum of the measured net photosynthetic oxygen flux ''NP'' plus the absolute value of ''LEDR''.'NP'' plus the absolute value of ''LEDR''.)