Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "The '''motive unit''' [MU] is the variable SI unit in which the [[motive entity]] (transformant) of a transformation is expressed, which depends on the energy transformation under study and on the chosen [[format]]. Fundamental MU for electrochemical transformations are: * MU = x, for the particle or molecular format, <u>''N''</u> * MU = mol, for the chemical or molar format, <u>''n''</u> * MU = C, for the electrical format, <u>''e''</u>; For the [[protonmotive force]] the motive entity is the proton with charge number ''z''=1. The protonmotive force is expressed in the electrical or molar format with MU J/C=V or J/mol=Jol, respectively. The conjugated flows, ''I'', are expressed in corresponding electrical or molar formats, C/s = A or mol/s, respectively. The [[charge number]], ''z'', has to be considered in the conversion of motive units (compare Table below), if a change not only of units but a transition between the entity [[elementary charge]] and an entity with charge number different from unity is involved (''e.g.'', O<sub>2</sub> with ''z''=4 in a redox reaction). The ratio of elementary charges per reacting O<sub>2</sub> molecule (''z''<sub>O<small>2</small></sub>=4) is multiplied by the elementary charge (''e'', coulombs per proton), which yields coulombs per O<sub>2</sub> [C∙x<sup>-1</sup>]. This in turn is multiplied with the [[Avogadro constant]], ''N''<sub>A</sub> (O<sub>2</sub> molecules per mole O<sub>2</sub> [x∙mol<sup>-1</sup>]), thus obtaining for ''zeN''<sub>A</sub> the ratio of elementary charges [C] per amount of O<sub>2</sub> [mol<sup>-1</sup>]. The conversion factor for O<sub>2</sub> is 385.94132 C∙mmol<sup>-1</sup>.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Motive unit  + (The '''motive unit''' [MU] is the variableThe '''motive unit''' [MU] is the variable SI unit in which the [[motive entity]] (transformant) of a transformation is expressed, which depends on the energy transformation under study and on the chosen [[format]]. Fundamental MU for electrochemical transformations are:</br></br>* MU = x, for the particle or molecular format, <u>''N''</u></br>* MU = mol, for the chemical or molar format, <u>''n''</u></br>* MU = C, for the electrical format, <u>''e''</u>; </br></br>For the [[protonmotive force]] the motive entity is the proton with charge number ''z''=1. The protonmotive force is expressed in the electrical or molar format with MU J/C=V or J/mol=Jol, respectively. The conjugated flows, ''I'', are expressed in corresponding electrical or molar formats, C/s = A or mol/s, respectively.</br></br>The [[charge number]], ''z'', has to be considered in the conversion of motive units (compare Table below), if a change not only of units but a transition between the entity [[elementary charge]] and an entity with charge number different from unity is involved (''e.g.'', O<sub>2</sub> with ''z''=4 in a redox reaction). The ratio of elementary charges per reacting O<sub>2</sub> molecule (''z''<sub>O<small>2</small></sub>=4) is multiplied by the elementary charge (''e'', coulombs per proton), which yields coulombs per O<sub>2</sub> [C∙x<sup>-1</sup>]. This in turn is multiplied with the [[Avogadro constant]], ''N''<sub>A</sub> (O<sub>2</sub> molecules per mole O<sub>2</sub> [x∙mol<sup>-1</sup>]), thus obtaining for ''zeN''<sub>A</sub> the ratio of elementary charges [C] per amount of O<sub>2</sub> [mol<sup>-1</sup>]. The conversion factor for O<sub>2</sub> is 385.94132 C∙mmol<sup>-1</sup>., thus obtaining for ''zeN''<sub>A</sub> the ratio of elementary charges [C] per amount of O<sub>2</sub> [mol<sup>-1</sup>]. The conversion factor for O<sub>2</sub> is 385.94132 C∙mmol<sup>-1</sup>.)