Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "Most biological samples do not consist simply of pigments but also particles (e.g. cells, fibres, mitochondria) which scatter the [[incident light]]. The effect of '''scattering''' is an apparent increase in [[absorbance]] due to an increase in pathlength and the loss of light scattered in directions other than that of the detector. Two types of scattering are encountered. For incident light of wavelength ''λ'', Rayleigh scattering is due to particles of diameter < ''λ'' (molecules, sub-cellular particles). The intensity of scatter light is proportional to ''λ''<sup>4</sup> and is predominantly backward scattering. Mie scattering is caused by particles of diameter of the order of or greater than ''λ'' (tissue cells). The intensity of scatter light is proportional to 1/''λ'' and is predominantly forward scattering.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Scattering  + (Most biological samples do not consist simMost biological samples do not consist simply of pigments but also particles (e.g. cells, fibres, mitochondria) which scatter the [[incident light]]. The effect of '''scattering''' is an apparent increase in [[absorbance]] due to an increase in pathlength and the loss of light scattered in directions other than that of the detector. Two types of scattering are encountered. For incident light of wavelength ''λ'', Rayleigh scattering is due to particles of diameter < ''λ'' (molecules, sub-cellular particles). The intensity of scatter light is proportional to ''λ''<sup>4</sup> and is predominantly backward scattering. Mie scattering is caused by particles of diameter of the order of or greater than ''λ'' (tissue cells). The intensity of scatter light is proportional to 1/''λ'' and is predominantly forward scattering.ional to 1/''λ'' and is predominantly forward scattering.)