Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Q-cycle''' refers to the sequential oxidation and reduction of the electron carrier Coenzyme Q (CoQ or [[ubiquinone]]) in mitochondria or plastoquinones in the photosynthetic system. Originally, the concept of the Q-cycle was proposed by [[Mitchell P|Peter D Mitchell]]. Following several modifications, the Q-cycle is established, describing how [[CIII]] translocates hydrogen ions against the protonmotive force. The reduced CoQ ([[quinol |ubiquinol]] QH<sub>2</sub>) binds to the Q<sub>o</sub> site of CIII, while the oxidized CoQ ([[ubiquinone]] Q) to the Q<sub>i</sub> site of CIII. First, QH<sub>2</sub> reduces the iron-sulfur protein and feeds cytochrome ''c''<sub>1</sub> with one electron. The other electron is transferred to the ''b''<sub>L</sub> heme and reduces the ''b''<sub>H</sub> heme, which transfers the electron to ubiquinone at the Q<sub>i</sub>-site which is reduced to a [[semiquinone]]. A second QH<sub>2</sub> is required to fully reduce semiquinone to ubiquinol. At the end of the Q-cycle, four protons leave the mt-matrix and enter the intermembrane space, and the reduced cytochrome ''c'' transfers electrons to CIV. The ubiquinol generated at the Q<sub>i</sub>-site can be reused by binding to the Q<sub>o</sub>-site of CIII.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Q-cycle  + ('''Q-cycle''' refers to the sequential oxi'''Q-cycle''' refers to the sequential oxidation and reduction of the electron carrier Coenzyme Q (CoQ or [[ubiquinone]]) in mitochondria or plastoquinones in the photosynthetic system. Originally, the concept of the Q-cycle was proposed by [[Mitchell P|Peter D Mitchell]]. Following several modifications, the Q-cycle is established, describing how [[CIII]] translocates hydrogen ions against the protonmotive force. The reduced CoQ ([[quinol |ubiquinol]] QH<sub>2</sub>) binds to the Q<sub>o</sub> site of CIII, while the oxidized CoQ ([[ubiquinone]] Q) to the Q<sub>i</sub> site of CIII. First, QH<sub>2</sub> reduces the iron-sulfur protein and feeds cytochrome ''c''<sub>1</sub> with one electron. The other electron is transferred to the ''b''<sub>L</sub> heme and reduces the ''b''<sub>H</sub> heme, which transfers the electron to ubiquinone at the Q<sub>i</sub>-site which is reduced to a [[semiquinone]]. A second QH<sub>2</sub> is required to fully reduce semiquinone to ubiquinol. At the end of the Q-cycle, four protons leave the mt-matrix and enter the intermembrane space, and the reduced cytochrome ''c'' transfers electrons to CIV. The ubiquinol generated at the Q<sub>i</sub>-site can be reused by binding to the Q<sub>o</sub>-site of CIII.chrome ''c'' transfers electrons to CIV. The ubiquinol generated at the Q<sub>i</sub>-site can be reused by binding to the Q<sub>o</sub>-site of CIII.)