Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Fatty acid oxidation''' is a multi-step process by which [[fatty acid]]s are broken down in [[β-oxidation]] to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further electron transfer to CoQ. Whereas NADH is the substrate of CI, FADH<sub>2</sub> is the substrate of [[electron-transferring flavoprotein complex]] (CETF) which is localized on the matrix face of the mtIM, and supplies electrons from FADH<sub>2</sub> to CoQ. Before the ß-oxidation in the mitochondrial matrix, fatty acids (short-chain with 1-6, medium-chain with 7–12, long-chain with >12 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. For the mitochondrial transport of long-chain fatty acids the mtOM-enzyme [[carnitine palmitoyltransferase I]] (CPT-1; considered as a rate-limiting step in FAO) is required which generates an acyl-carnitine intermediate from acyl-CoA and carnitine. In the next step, an integral mtIM protein [[carnitine-acylcarnitine translocase]] (CACT) catalyzes the entrance of acyl-carnitines into the mitochondrial matrix in exchange for free carnitines. In the inner side of the mtIM, another enzyme [[carnitine palmitoyltransferase 2]] (CPT-2) converts the acyl-carnitines to carnitine and acyl-CoAs, which undergo ß-oxidation in the mitochondrial matrix. Short- and medium-chain fatty acids do not require the carnitine shuttle for mitochondrial transport. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]].". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Fatty acid oxidation  + ('''Fatty acid oxidation''' is a multi-step'''Fatty acid oxidation''' is a multi-step process by which [[fatty acid]]s are broken down in [[β-oxidation]] to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further electron transfer to CoQ. Whereas NADH is the substrate of CI, FADH<sub>2</sub> is the substrate of [[electron-transferring flavoprotein complex]] (CETF) which is localized on the matrix face of the mtIM, and supplies electrons from FADH<sub>2</sub> to CoQ. Before the ß-oxidation in the mitochondrial matrix, fatty acids (short-chain with 1-6, medium-chain with 7–12, long-chain with >12 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. For the mitochondrial transport of long-chain fatty acids the mtOM-enzyme [[carnitine palmitoyltransferase I]] (CPT-1; considered as a rate-limiting step in FAO) is required which generates an acyl-carnitine intermediate from acyl-CoA and carnitine. In the next step, an integral mtIM protein [[carnitine-acylcarnitine translocase]] (CACT) catalyzes the entrance of acyl-carnitines into the mitochondrial matrix in exchange for free carnitines. In the inner side of the mtIM, another enzyme [[carnitine palmitoyltransferase 2]] (CPT-2) converts the acyl-carnitines to carnitine and acyl-CoAs, which undergo ß-oxidation in the mitochondrial matrix. Short- and medium-chain fatty acids do not require the carnitine shuttle for mitochondrial transport. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]].mitoylcarnitine]].)