Hayes 2020 Nutrients

From Bioblast
Revision as of 15:32, 2 April 2020 by Plangger Mario (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Hayes P, Fergus C, Ghanim M, Cirzi C, Burtnyak L, McGrenaghan CJ, Tuorto F, Nolan DP, Kelly VP (2020) Queuine micronutrient deficiency promotes Warburg metabolism and reversal of the mitochondrial ATP synthase in HeLa cells. Nutrients 12:E871.

Β» PMID: 32213952 Open Access

Hayes P, Fergus C, Ghanim M, Cirzi C, Burtnyak L, McGrenaghan CJ, Tuorto F, Nolan DP, Kelly VP (2020) Nutrients

Abstract: Queuine is a eukaryotic micronutrient, derived exclusively from eubacteria. It is incorporated into both cytosolic and mitochondrial transfer RNA to generate a queuosine nucleotide at position 34 of the anticodon loop. The transfer RNA of primary tumors has been shown to be hypomodified with respect to queuosine, with decreased levels correlating with disease progression and poor patient survival. Here, we assess the impact of queuine deficiency on mitochondrial bioenergetics and substrate metabolism in HeLa cells. Queuine depletion is shown to promote a Warburg type metabolism, characterized by increased aerobic glycolysis and glutaminolysis, concomitant with increased ammonia and lactate production and elevated levels of lactate dehydrogenase activity but in the absence of significant changes to proliferation. In intact cells, queuine deficiency caused an increased rate of mitochondrial proton leak and a decreased rate of ATP synthesis, correlating with an observed reduction in cellular ATP levels. Data from permeabilized cells demonstrated that the activity of individual complexes of the mitochondrial electron transport chain were not affected by the micronutrient. Notably, in queuine free cells that had been adapted to grow in galactose medium, the re-introduction of glucose permitted the mitochondrial F1FO-ATP synthase to operate in the reverse direction, acting to hyperpolarize the mitochondrial membrane potential; a commonly observed but poorly understood cancer trait. Together, our data suggest that queuosine hypomodification is a deliberate and advantageous adaptation of cancer cells to facilitate the metabolic switch between oxidative phosphorylation and aerobic glycolysis. β€’ Keywords: Queuine, RNA modification, Warburg metabolism, Aerobic glycolysis, Microbiome, Micronutrient, Queuosine β€’ Bioblast editor: Plangger M β€’ O2k-Network Lab: IE Dublin Porter RK

Labels: MiParea: Respiration, Exercise physiology;nutrition;life style  Pathology: Cancer 

Organism: Human  Tissue;cell: HeLa  Preparation: Permeabilized cells, Intact cells 

Coupling state: LEAK, ROUTINE, OXPHOS, ET  Pathway: N, S, Gp, CIV, ROX  HRR: Oxygraph-2k 


Cookies help us deliver our services. By using our services, you agree to our use of cookies.