McManus 2019 Cell Metab

From Bioblast
Publications in the MiPMap
McManus MJ, Picard M, Chen HW, De Haas HJ, Potluri P, Leipzig J, Towheed A, Angelin A, Sengupta P, Morrow RM, Kauffman BA, Vermulst M, Narula J, Wallace DC (2019) Mitochondrial DNA variation dictates expressivity and progression of nuclear DNA mutations causing cardiomyopathy. Cell Metab 29:78-90.

Β» PMID: 30174309

McManus MJ, Picard M, Chen HW, De Haas HJ, Potluri P, Leipzig J, Towheed A, Angelin A, Sengupta P, Morrow RM, Kauffman BA, Vermulst M, Narula J, Wallace DC (2019) Cell Metab

Abstract: Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease. β€’ Keywords: F(1)F(o)-ATPase, OPA1, Adenine nucleotide translocator, Aging, Cardiomyopathy, Complex I, Complex IV, Mitochondrial DNA, Mitochondrial-nuclear interaction, mtDNA instability β€’ Bioblast editor: Plangger M β€’ O2k-Network Lab: US PA Philadelphia Wallace DC


Labels: MiParea: Respiration, mtDNA;mt-genetics, nDNA;cell genetics, Genetic knockout;overexpression  Pathology: Myopathy 

Organism: Mouse  Tissue;cell: Heart  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS  Pathway: N, ROX  HRR: Oxygraph-2k 

Labels, 2018-09 


Cookies help us deliver our services. By using our services, you agree to our use of cookies.