Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Lemminger 2022 Antioxidants (Basel)

From Bioblast
Publications in the MiPMap
Lemminger AK, Fiorenza M, Eibye K, Bangsbo J, Hostrup M (2022) High-intensity exercise training alters the effect of N-acetylcysteine on exercise-related muscle ionic shifts in men.

Β» Antioxidants (Basel) 12:53. PMID: 36670915 Open Access

Lemminger Anders K, Fiorenza Matteo, Eibye Kasper, Bangsbo Jens, Hostrup Morten (2022) Antioxidants (Basel)

Abstract: This study investigated whether high-intensity exercise training alters the effect of N-acetylcysteine (a precursor of antioxidant glutathione) on exercise-related muscle ionic shifts. We assigned 20 recreationally-active men to 6 weeks of high-intensity exercise training, comprising three weekly sessions of 4-10 Γ— 20-s all-out bouts interspersed by 2 min recovery (SET, n = 10), or habitual lifestyle maintenance (n = 10). Before and after SET, we measured ionic shifts across the working muscle, using leg arteriovenous balance technique, during one-legged knee-extensor exercise to exhaustion with and without N-acetylcysteine infusion. Furthermore, we sampled vastus lateralis muscle biopsies for analyses of metabolites, mitochondrial respiratory function, and proteins regulating ion transport and antioxidant defense. SET lowered exercise-related H+, K+, lactate-, and Na+ shifts and enhanced exercise performance by β‰ˆ45%. While N-acetylcysteine did not affect exercise-related ionic shifts before SET, it lowered H+, HCO3-, and Na+ shifts after SET. SET enhanced muscle mitochondrial respiratory capacity and augmented the abundance of Na+/K+-ATPase subunits (Ξ±1 and Ξ²1), ATP-sensitive K+ channel subunit (Kir6.2), and monocarboxylate transporter-1, as well as superoxide dismutase-2 and glutathione peroxidase-1. Collectively, these findings demonstrate that high-intensity exercise training not only induces multiple adaptations that enhance the ability to counter exercise-related ionic shifts but also potentiates the effect of N-acetylcysteine on ionic shifts during exercise. β€’ Keywords: NAC, ROS, Antioxidant, High-intensity training, Lactate, Oxygen species, pH, Performance, Potassium, Scavengers β€’ Bioblast editor: Plangger M

Labels: MiParea: Respiration, Exercise physiology;nutrition;life style 

Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 

Coupling state: LEAK, OXPHOS, ET  Pathway: F, N, S, NS, ROX  HRR: Oxygraph-2k