Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Komlodi 2022 MitoFit ROS review

From Bioblast
Publications in the MiPMap
KomlĂłdi T, Gnaiger E (2022) Discrepancy on oxygen dependence of ROS production - review. MitoFit Preprints 2022 (in prep).



Abstract:


Labels:







References

LinkViewReferenceYear
PMID:8222081 Open AccessArcher SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100-12.1993
PMID:29887397 Open AccessArias-Mayenco I, GonzĂĄlez-RodrĂ­guez P, Torres-Torrelo H, Gao L, FernĂĄndez-AgĂŒera MC, Bonilla-Henao V, Ortega-SĂĄenz P, LĂłpez-Barneo J (2018) Acute O2 Sensing: role of coenzyme QH2/Q ratio and mitochondrial ROS compartmentalization. Cell Metab 28:145-158.2018
PMID:32694740Ast T, Mootha VK (2019) Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat Metab 1:858-860.2019
PMID:10600842 Open AccessBecker LB, Vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:2240-6.1999
PMID: 4749271 Open AccessBoveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707-16.1973
PMID:16357365 Open AccessBrueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM (2006) Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol 34:453-63.2006
J Cell Mol Med 15:1239-53. PMID:21251211 Open AccessCarreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. https://doi.org/10.1111/j.1582-4934.2011.01258.x2011
PMID:9751731 Open AccessChandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci 95:11715-20.1998
PMID:10833514 Open AccessChandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130-8.2000
PMID:28371751 Open AccessCobley JN, Close GL, Bailey DM, Davison GW (2017) Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol 12:540-548.2017
PMID: 22978713 Open AccessDikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20:372–82.2014
Open AccessDirmeier R, O'Brien KM, Engle M, Dodd A, Spears E, Poyton RO (2002) Exposure of yeast cells to anoxia induces transient oxidative stress. Implications for the induction of hypoxic genes. J Biol Chem 277:34773-84.2002
PMID: 31982614Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN (2020) Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion 51:126-39.2020
PMID:9565580 Open AccessDuranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619-24.1998
Bioblast pdf
Adv Exp Med Biol 543:39-55. PMID: 14713113
Gnaiger E (2003) Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. https://doi.org/10.1007/978-1-4419-8997-0_42003
J Bioenerg Biomembr 27:583-96. PMID: 8746845
Bioblast pdf
Gnaiger E, Steinlechner-Maran R, MĂ©ndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. https://doi.org/10.1007/BF021116561995
PMID:29702406 Open AccessGrivennikova VG, Kareyeva AV, Vinogradov AD (2018) Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Redox Biol 17:192-9.2018
PMID: 16054089 Open AccessGuzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401-8.2005
PMID:17627464Guzy RD, Mack MM, Schumacker PT (2007) Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast. Antioxid Redox Signal 9:1317-28.2007
PMID:16280459 Open AccessHe L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C (2005) Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289:916-24.2005
PMID: 24637263Hernansanz-Agustin P, Izquierdo-Álvarez A, Sånchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A (2014) Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 71:146-56.2014
PMID: 19366681 Open AccessHoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236-45.2009
PMID:16963616 Open AccessHoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292:H101-8.2007
PMID:3010727Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663-75.1986
PMID:25161621 Open AccessKaludercic N, Deshwal S, Di Lisa F (2014) Reactive oxygen species and redox compartmentalization. Front Physiol 5:285.2014
PMID:22027063 Open AccessKalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biol Med 52:1-6.2012
Physiol Rev 99:161-234. PMID:30354965 Open AccessKeeley TP, Mann GE (2019) Defining physiological normoxia for improved translation of cell physiology to animal models and humans. https://doi.org/10.1152/physrev.00041.20172019
PMID:10926565 Open AccessKillilea DW, Hester R, Balczon R, Babal P, Gillespie MN (2000) Free radical production in hypoxic pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 279:408-12.2000
PMID:29850998Komlodi T, Sobotka O, Krumschnabel G, Bezuidenhout N, Hiller E, Doerrier C, Gnaiger E (2018) Comparison of mitochondrial incubation media for measurement of respiration and hydrogen peroxide production. Methods Mol Biol 1782:137-55.2018
Bioenerg Commun 2021.4. Open Access pdf published online 2021-12-21

KomlĂłdi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. Bioenerg Commun 2021.4. https://doi.org/10.26124/bec:2021-00042021
PMID: 14625276 Open AccessKudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127-35.2004
PMID:16682634 Open AccessKussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci 103:7607-12.2006
PMID:1322737 Open AccessLeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227-31.1992
PMID: 27465434 Open AccessLi N, Guenancia C, Rigal E, Hachet O, Chollet P, Desmoulins L, Leloup C, Rochette L, Vergely C (2016) Short-term moderate diet restriction in adulthood can reverse oxidative, cardiovascular and metabolic alterations induced by postnatal overfeeding in mice. Sci Rep 6:308172016
PMID: 32233925 Â»O2k-briefLi Puma LC, Hedges M, Heckman JM, Mathias AB, Engstrom MR, Brown AB, Chicco AJ (2020) Experimental oxygen concentration influences rates of mitochondrial hydrogen peroxide release from cardiac and skeletal muscle preparations. Am J Physiol Regul Integr Comp Physiol 318:972-80.2020
PMID:12665465 Open AccessLiu JQ, Sham JSK, Shimoda LA, Kuppusamy P, Sylvester JT (2003) Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 285:322-33.2003
PMID:21185334 Open AccessLoor G, Kondapalli J, Iwase H, Chandel NS, Waypa GB, Guzy RD, Vanden Hoek TL, Schumacker PT (2011) Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta 1813:1382-94.2011
Open AccessMansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393-9.2005
PMID:8918370Marshall C, Mamary AJ, Verhoeven AJ, Marshall BE (1996) Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 15:633-44.1996
Br J Radiol 87:20130676. PMID:24588669 Open AccessMcKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. https://doi.org/10.1259/bjr.201306762014
PMID:18339777 Open AccessMehta JP, Campian JL, Guardiola J, Cabrera JA, Weir EK, Eaton JW (2008) Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells. Chest 1410-1414.2008
PMID: 23036824NÀpÀnkangas JP, Liimatta EV, Joensuu P, Bergmann U, Ylitalo K, Hassinen IE (2012) Superoxide production during ischemia-reperfusion in the perfused rat heart: a comparison of two methods of measurement. J Mol Cell Cardiol 53:906-15.2012
PMID:5507367Paniker NV, Srivastava SK, Beutler E (1970) Glutathione metabolism of the red cells. Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta 215:456-60.1970
PMID: 22057559
Bioblast pdf
O2k-Protocols
Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25-58. https://doi.org/10.1007/978-1-61779-382-0_32012
PMID: 29743240 Open AccessRobb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, James AM, Murphy MP (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem 293:9869-79. https://doi.org/10.1074/jbc.RA118.0036472018
PMID:15862307 Open AccessSanjuan-Pla A, Cervera AM, Apostolova N, Garcia-Bou R, Victor VM, Murphy MP, McCreath KJ (2005) A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 579:2669-74.2005
PMID:12376345 Open AccessSchroedl C, McClintock DS, Budinger GRS, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:922-31.2002
PMID:9129943 Open AccessSies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291-5.1997
PMID:33657525 Open AccessSies H (2021) Oxidative eustress: On constant alert for redox homeostasis. Redox Biol 41:101867.2021
PMID:32231263Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363-83.2020
Methods Cell Biol 155:273-93. PMID: 32183962Stepanova A, Galkin A (2020) Measurement of mitochondrial H2O2 production under varying O2 tensions. https://doi.org/10.1016/bs.mcb.2019.12.0082020
PMID: 28914132Stepanova A, Kahl A, Konrad C, Ten V, Starkov AS, Galkin A (2017) Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia-reperfusion injury. J Cereb Blood Flow Metab 37:3649-58.2017
PMID: 29629602Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A (2018) Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain. J Cereb Blood Flow Metab 39:1790-802.2018
PMID: 30582748Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A (2018) The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem 148:731-45.2018
PMID:30363917Stuart JA, Fonseca JF, Moradi F, Cunningham C, Seliman B, Worsfold CR, Dolan S, Abando J, Maddalena LA (2018) How Supraphysiological Oxygen Levels in Standard Cell Culture Affect Oxygen-Consuming Reactions. Oxid Med Cell Longev 2018:8238459.2018
PMID: 32040259 Open Access  Â»O2k-briefSzibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska-Vielhaber G, Heidler J, Wittig I, Nyman TA, Gaertner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlueter KD, Jacobs HT(2020) Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. J Cell Mol Med 24:3534-48.2020
PMID:11485972 Open AccessTarpey MM, Fridovich I (2001) Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89:224-36.2001
PMID:7138014Turrens JF, Freeman BA, Crapo JD (1982) Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch Biochem Biophys 217:411-21.1982
PMID:9299379Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571-83.1997
Open AccessVaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98(2):296-302.2001
PMID:9042951 Open AccessVĂĄsquez-Vivar J, Hogg N, Pritchard Jr KA, Martasek P, Kalyanaraman B (1997) Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Letters 403:127-30.1997
PMID:11420302 Open AccessWaypa GB, Chandel NS, Schumacker PT (2001) Model for Hypoxic Pulmonary Vasoconstriction Involving Mitochondrial Oxygen Sensing. Circ Res 88:1259–1266.2001
PMID:20019331 Open AccessWaypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526-35.2010
PMID:23328522 Open AccessWaypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187:424-32.2013
PMID:17693484 Open AccessWu W, Platoshyn O, Firth AL, Yuan XJ (2007) Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293:L952-9.2007
PMC3587154 Open AccessZielonka J, KalyanaramanB (2010) Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic Biol Med 48:983–1001.2010