Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Komlodi 2022 MitoFit

From Bioblast

Bioblast2022 banner.jpg

Publications in the MiPMap
Komlódi T, Tretter L (2022) The protonmotive force – not merely membrane potential. https://doi.org/10.26124/mitofit:2022-00122022-11-29 published in Bioenerg Commun 2022.16.

» MitoFit Preprints 2022.12.

MitoFit pdf

The protonmotive force - not merely membrane potential »Watch the presentation«

MitoFit:2022-0012 (2022) MitoFit Prep

Abstract: Komlodi 2022 Abstract Bioblast: The protonmotive force pmF establishes the link between electrical and chemical components of energy transformation and coupling in oxidative phosphorylation in the mitochondrial electron transfer system. The electrical part is corresponding to the mitochondrial membrane potential ΔΨmt and the chemical part is related to the transmembrane pH gradient ΔpH. Although the contribution of ΔpH to pmF is smaller than that of ΔΨmt, ΔpH plays an important role in mitochondrial transport processes and regulation of reactive oxygen species production. Separate measurement of ΔΨmt and ΔpH allows for calculation of pmF. Methods for monitoring ΔΨmt such as fluorescence dyes are generally available, while determination of ΔpH is more challenging.

In this review, we focus on the application of the fluorescence ratiometric method using the acetoxymethyl ester form of 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF/AM) for real-time monitoring of the intramitochondrial pH in isolated mitochondria. Knowing the intra- and extramitochondrial pH allows for calculating the ΔpH. Application of specific ionophores such as nigericin or valinomycin, exerts the possibility to dissect the two components of the pmF in different directions. Furthermore, we tried to summarize those mitochondrial processes, such as production of reactive oxygen species, where the ΔpH has an important role. Keywords: BCECF; intramitochondrial pH; matrix pH; ΔpH; mitochondria, mitochondrial membrane potential, ΔΨmt; nigercin; protonmotive force, pmF; reverse electron transfer, RET; safranin; triphenylphosphonium, TPP+; valinomycin Bioblast editor: Tindle-Solomon L O2k-Network Lab: HU Budapest Tretter L

ORCID: ORCID.png Komlodi Timea

References

LinkReferenceYearView
Akerman KEO, Wikström MKF (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191-7.1976PMID: 976474 Open Access
Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127-55.1999PMID:10508231 Open Access
Bernardi P, Azzone GF (1979) delta pH induced calcium fluxes in rat liver mitochondria. Eur J Biochem 102:555-62.1979PMID:43251 Open Access
Boyer PD (2002) A research journey with ATP synthase. J Biol Chem 277:39045-61.2002PMID:12181328 Open Access
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54.1976PMID:942051
Bunting JR, Phan TV, Kamali E, Dowben RM (1989) Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction. Biophys J 56:979-93.1989PMID:2605307 Open Access
Campanella M, Parker N, Choon Hong Tan, Hall AM, Duchen MR (2009) IF(1): setting the pace of the F(1)F(o)-ATP synthase. Trends Biochem Sci 34:343-50.2009PMID:19559621 Open Access
Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278(21):19062-70.2003PMID: 12660243 Open Access
Chinopoulos C (2011) The "B space" of mitochondrial phosphorylation. J Neurosci Res 89:1897-904.2011PMID: 21541983 Open Access
Chinopoulos C, Gerencser AA, Mandi M, Mathe K, Töröcsik B, Doczi J, Turiak L, Kiss G, Konràd C, Vajda S, Vereczki V, Oh RJ, Adam-Vizi V (2010) Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation. FASEB J 24:2405-16.2010PMID:20207940 Open Access
Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103-17.2012PMID:22057563
Garlid KD, Paucek P (2001) The mitochondrial potassium cycle. IUBMB Life 52:153-8.2001PMID: 11798027 Open Access
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020Open Access pdf published online 2020-12-30

Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110:2709-28.2010PMID 19831417
Henderson PJ, McGivan JD, Chappell JB (1969) The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J 111:521-35.1969PMID:5774477 Open Access
Hoek JB, Lofrumento NE, Meyer AJ, Tager JM (1970) Phosphate transport in rat-liver mitochondria. Biochim Biophys Acta 226:297-308.1970PMID 5575160
Jung DW, Davis MH, Brierley GP (1989) Estimation of matrix pH in isolated heart mitochondria using a fluorescent probe. Anal Biochem 178:348-54.1989PMID 2751096 Open Access
Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105-21.1979PMID:490631
Kauppinen RA, Hassinen IE (1984) Monitoring of mitochondrial membrane potential in isolated perfused rat heart. Am J Physiol 247:H508-16.1984PMID: 6496697
Kiss G, Konrad C, Doczi J, Starkov AA, Kawamata H, Manfredi G, Zhang SF, Gibson GE, Beal MF, Adam-Vizi V, Chinopoulos C (2013) The negative impact of alpha-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. FASEB J 27:2392-406.2013PMID: 23475850 Open Access
Komlódi T, Geibl FF, Sassani M, Ambrus A, Tretter L (2018) Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria. J Bioenerg Biomembr 50:355-3652018PMID: 30116920 Open Access
Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters 416:15-8.1997PMID:9369223 Open Access
Krumschnabel G, Eigentler A, Fasching M, Gnaiger E (2014) Use of safranin for the assessment of mitochondrial membrane potential by high-resolution respirometry and fluorometry. https://doi.org/10.1016/B978-0-12-416618-9.00009-12014Methods Enzymol 542:163-81. PMID: 24862266 »O2k-brief
O2k-Protocols contents
Lambert AJ, Brand MD (2004) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382:511-7.2004PMID:15175007 Open Access
Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (2004) Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues. J Biol Chem 279:36621-4.2004PMID:15234968 Open Access
Ligeti E, Fonyo A (1977) Competitive inhibition of valinomycin-induced K+-transport by Mg2+-ions in liver mitochondria. FEBS Lett 79:33-6.1977PMID:891931 Open Access
Metelkin E, Demin O, Kovács Z,Chinopoulos C (2009) Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS J 276:6942-55.2009PMID:19860824 Open Access
Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144-8.1961PMID: 13771349
Mitchell P (1967) Proton current flow in mitochondrial systems. Nature 214:1327–8.1967https://www.nature.com/articles/2141327a0
Mitchell P, Moyle J (1968) Proton translocation coupled to ATP hydrolysis in rat liver mitochondria. Eur J Biochem 4:530-9.1968PMID 4232392 Open Access
Rieger B, Arroum T, Borowski MT, Villalta J, and Busch KB (2021) Mitochondrial F1FO ATP synthase determines the local proton motive force at cristae rims. EMBO Rep 22:e52727.2021PMID:34595823 Open Access
Rieger B, Junge W, Busch KB (2014) Lateral pH gradient between OXPHOS complex IV and F(0)F(1) ATP-synthase in folded mitochondrial membranes. Nat Commun 5:3103.2014PMID: 24476986 Open Access
Rolfe DF, Hulbert AJ, Brand MD (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta 1188:405-16.1994PMID:7803454
Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752-8.1987PMID:3693430 Open Access
Rottenberg H (1984) Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 81:127-38.1984PMID:6492133
Rouslin W, Erickson JL, Solaro RJ (1986) Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol 250:H503-8.1986PMID:2937313 Open Access
Scaduto Jr RC,Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469-77.1999PMID:9876159 Open Access
Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283:29292-300.2008PMID:18687689 Open Access
Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101-7.2003PMID:12911618 Open Access
Tretter L, Takacs K, Hegedüs V, Adam-Vizi V (2007) Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. J Neurochem 100:650-63.2007PMID: 17263793 Open Access
Vajda S, Mándi M, Konràd C, Kiss G, Ambrus A, Adam-Vizi V, Chinopoulos C (2009) A re-evaluation of the role of matrix acidification in uncoupler-induced Ca2+ release from mitochondria. FEBS J 276:2713-24.2009PMID: 19459934; pdf
Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266-77.2001PMID:11677254 Open Access
Walker JE (1994) The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4:912-8.1994PMID:7712295 Open Access
Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, van der Bliek AM, Shackelford DB, Liesa M, Shirihai OS (2019) Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 38:e101056.2019PMID:31609012 Open Access
Zoccarato F, Miotto C, Cavallini L, Alexandre A (2011) The control of mitochondrial succinate-dependent H2O2 production. J Bioenerg Biomembr 43:359-66.2011PMID: 21735176 Open Access
Zółkiewska A, Czyz A, Duszyński J, Wojtczak L (1993) Continuous recording of intramitochondrial pH with fluorescent pH indicators: novel probes and limitations of the method. Acta Biochim Pol 40:241-50.1993PMID 8212962 Open Access


Labels: