Hayward 2018 Thesis

From Bioblast
Publications in the MiPMap
Hayward L (2018) The effect of anoxia on mitochondrial function in a hibernator (Ictidomys tridecemlineatus). Master's Thesis 57.

Β» Open Access

Hayward L (2018) Master's Thesis

Abstract: Hibernation protects mammalian tissues against ischemia-reperfusion injury, but the underlying biochemical mechanisms are unknown. I hypothesized that the mechanisms allowing for mitochondrial metabolic flexibility during hibernation permit anoxia tolerance and contribute to tissue ischemia-reperfusion tolerance. I assessed mitochondrial performance before and after five minutes of anoxia in liver mitochondria isolated from thirteen-lined ground squirrels. I compared this anoxia effect among animals that were summer active (SA), or during hibernation (in torpor or interbout euthermia; IBE). Anoxia decreased state 3 respiration in all groups, but mitochondria isolated from torpid squirrels were least affected; these decreases paralleled decreased activity of electron transport system complexes in IBE and SA. Leak respiration was more elevated in SA mitochondria following anoxia than in either IBE or torpor. These findings suggest that during hibernation (especially in torpor) mitochondrial respiration is maintained with a concurrent reduction in oxidative damage following anoxia, which may protect from ischemia-reperfusion injury. β€’ Keywords: Ischemia, Reperfusion, Hibernation, Metabolism, Thirteen-lined ground squirrel, High-resolution respirometry β€’ Bioblast editor: Plangger M β€’ O2k-Network Lab: CA London Staples JF

Labels: MiParea: Respiration 

Stress:Ischemia-reperfusion  Organism: Other mammals  Tissue;cell: Liver  Preparation: Isolated mitochondria  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex V;ATP synthase  Regulation: mt-Membrane potential  Coupling state: LEAK, OXPHOS  Pathway: N, NS  HRR: Oxygraph-2k, TPP 

Labels, 2019-02 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.