Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Du 2016 J Exp Biol

From Bioblast
Publications in the MiPMap
Du SN, Mahalingam S, Borowiec BG, Scott GR (2016) Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J Exp Biol 219:1130-8.

Β» PMID:26896545

Du SN, Mahalingam S, Borowiec BG, Scott GR (2016) J Exp Biol

Abstract: Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2 kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish (Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2), or intermittent diel cycles of nocturnal hypoxia (12 h normoxia: 12 h hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, LEAK respiration, coupling control, or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2 kinetics, but P50 (the O2 tension at which hypoxia inhibits respiration by 50%) was lower in the LEAK state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2 tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. β€’ Keywords: Energy metabolism, Free radicals, Oxidative stress, Teleost, Ampliflu Red

β€’ O2k-Network Lab: CA Hamilton Scott GR

Labels: MiParea: Respiration, Comparative MiP;environmental MiP 

Stress:Oxidative stress;RONS  Organism: Fishes  Tissue;cell: Liver  Preparation: Isolated mitochondria 

Regulation: Oxygen kinetics  Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, CIV, NS  HRR: Oxygraph-2k, O2k-Fluorometer 

2016-03, AmR