Cardiovasc Res

From Bioblast
Journals in Bioblast
Journal title and website Cardiovascular Research

Publications

 ReferencePublishedView
Nambu 2021 Cardiovasc ResNambu H, Takada S, Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T, Sabe H, Kinugawa S (2021) Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res 117:805-19.2021https://pubmed.ncbi.nlm.nih.gov/32402072/
Ljubojevic-Holzer 2021 Cardiovasc ResLjubojevic-Holzer S, Kraler S, Djalinac N, Abdellatif M, Voglhuber J, Schipke J, Schmidt M, Kling KM, Franke GT, Herbst V, Zirlik A, von Lewinski D, Scherr D, Rainer PP, Kohlhaas M, Nickel A, Muehlfeld C, Maack C, Sedej S (2021) Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. https://doi.org/10.1093/cvr/cvab1122021Cardiovasc Res 118:1492-505. PMID: 33752242 Open Access
Woodman 2019 Cardiovasc ResWoodman AG, Mah R, Keddie DL, Noble RMN, Holody CD, Panahi S, Gragasin FS, Lemieux H, Bourque SL (2019) Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res 116:183-92.2019PMID: 30715197
Kolleritsch 2019 Cardiovasc ResKolleritsch S, Kien B, Schoiswohl G, Diwoky C, Schreiber R, Heier C, Maresch LK, Schweiger M, Eichmann TO, Stryeck S, Krenn P, Tomin T, Kolb D, RΓΌlicke T, Hoefler G, Wolinski H, Madl T, Birner-Gruenberger R, Haemmerle G (2019) Low cardiac lipolysis reduces mitochondrial fission and prevents lipotoxic heart dysfunction in Perilipin 5 mutant mice. Cardiovasc Res 116:339-52.2019PMID: 31166588 Open Access
Van der Pluijm 2018 Cardiovasc Resvan der Pluijm I, Burger J, van Heijningen PM, IJpma A, van Vliet N, Milanese C, Schoonderwoerd K, Sluiter W, Ringuette LJ, Dekkers DHW, Que I, Kaijzel EL, Te Riet L, MacFarlane E, Das D, van der Linden R, Vermeij M, Demmers JA, Mastroberardino PG, Davis EC, Yanagisawa H, Dietz H, Kanaar R, Essers J (2018) Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovasc Res 114:1776-93.2018PMID: 29931197
Abdurrachim 2017 Cardiovasc ResAbdurrachim D, Nabben M, Hoerr V, Kuhlmann MT, Bovenkamp P, Ciapaite J, Geraets IME, Coumans W, Luiken JJFP, Glatz JFC, SchΓ€fers M, Nicolay K, Faber C, Hermann S, Prompers JJ (2017) Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovasc Res 113:1148-60.2017PMID: 28549111 Open Access
Wuest 2016 Cardiovasc ResWΓΌst RC, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HW, Stienen GJ (2016) Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111:362-72.2016PMID: 27402402
Takada 2016 Cardiovasc ResTakada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota T, Tanaka S, Okita K, Tsutsui H (2016) Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 111:338-47.2016https://pubmed.ncbi.nlm.nih.gov/27450980/
Kancirova 2014 Cardiovasc ResKancirova I, Jasova M, Murarikova M, Carnicka S, Sumbalova Z, Ulicna O, Vancova O, Waczulikova I, Ziegelhoffer A, Ferko M (2014) P406Adaptive changes of rat heart mitochondrial respiration: response of remote ischemic preconditioning. Cardiovasc Res 103 Suppl 1:S74-5.2014PMID: 25020791
Lou 2013 Cardiovasc ResLou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS, Zaugg M (2013) Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury. Cardiovasc Res 97:251-61.2013PMID: 23097573 Open Access
Lou 2012 Cardiovasc ResLou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS, Zaugg M (2012) Infarct-remodeled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischemia/reperfusion injury. Cardiovasc Res 97:251-61.2012PMID: 23097573
Haram 2009 Cardiovasc ResHaram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisløff U (2009) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81:723-32.2009PMID: 19047339 Open Access
Rosca 2008 Cardiovasc ResRosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30-39.2008PMID:18710878
Acker 2006 Cardiovasc ResAcker T, Fandrey J, Acker H (2006) The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc Res 71:195-207.2006PMID:16740253 Open Access
Cookies help us deliver our services. By using our services, you agree to our use of cookies.