| Reference | Published | View |
---|
Nambu 2021 Cardiovasc Res | Nambu H, Takada S, Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T, Sabe H, Kinugawa S (2021) Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res 117:805-19. | 2021 | https://pubmed.ncbi.nlm.nih.gov/32402072/ |
Ljubojevic-Holzer 2021 Cardiovasc Res | Ljubojevic-Holzer S, Kraler S, Djalinac N, Abdellatif M, Voglhuber J, Schipke J, Schmidt M, Kling KM, Franke GT, Herbst V, Zirlik A, von Lewinski D, Scherr D, Rainer PP, Kohlhaas M, Nickel A, Muehlfeld C, Maack C, Sedej S (2021) Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. https://doi.org/10.1093/cvr/cvab112 | 2021 | Cardiovasc Res 118:1492-505. PMID: 33752242 Open Access |
Woodman 2019 Cardiovasc Res | Woodman AG, Mah R, Keddie DL, Noble RMN, Holody CD, Panahi S, Gragasin FS, Lemieux H, Bourque SL (2019) Perinatal iron deficiency and a high salt diet cause long-term kidney mitochondrial dysfunction and oxidative stress. Cardiovasc Res 116:183-92. | 2019 | PMID: 30715197 |
Kolleritsch 2019 Cardiovasc Res | Kolleritsch S, Kien B, Schoiswohl G, Diwoky C, Schreiber R, Heier C, Maresch LK, Schweiger M, Eichmann TO, Stryeck S, Krenn P, Tomin T, Kolb D, RΓΌlicke T, Hoefler G, Wolinski H, Madl T, Birner-Gruenberger R, Haemmerle G (2019) Low cardiac lipolysis reduces mitochondrial fission and prevents lipotoxic heart dysfunction in Perilipin 5 mutant mice. Cardiovasc Res 116:339-52. | 2019 | PMID: 31166588 Open Access |
Van der Pluijm 2018 Cardiovasc Res | van der Pluijm I, Burger J, van Heijningen PM, IJpma A, van Vliet N, Milanese C, Schoonderwoerd K, Sluiter W, Ringuette LJ, Dekkers DHW, Que I, Kaijzel EL, Te Riet L, MacFarlane E, Das D, van der Linden R, Vermeij M, Demmers JA, Mastroberardino PG, Davis EC, Yanagisawa H, Dietz H, Kanaar R, Essers J (2018) Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation. Cardiovasc Res 114:1776-93. | 2018 | PMID: 29931197 |
Abdurrachim 2017 Cardiovasc Res | Abdurrachim D, Nabben M, Hoerr V, Kuhlmann MT, Bovenkamp P, Ciapaite J, Geraets IME, Coumans W, Luiken JJFP, Glatz JFC, SchΓ€fers M, Nicolay K, Faber C, Hermann S, Prompers JJ (2017) Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations. Cardiovasc Res 113:1148-60. | 2017 | PMID: 28549111 Open Access |
Wuest 2016 Cardiovasc Res | WΓΌst RC, de Vries HJ, Wintjes LT, Rodenburg RJ, Niessen HW, Stienen GJ (2016) Mitochondrial complex I dysfunction and altered NAD(P)H kinetics in rat myocardium in cardiac right ventricular hypertrophy and failure. Cardiovasc Res 111:362-72. | 2016 | PMID: 27402402 |
Takada 2016 Cardiovasc Res | Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota T, Tanaka S, Okita K, Tsutsui H (2016) Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signalling. Cardiovasc Res 111:338-47. | 2016 | https://pubmed.ncbi.nlm.nih.gov/27450980/ |
Kancirova 2014 Cardiovasc Res | Kancirova I, Jasova M, Murarikova M, Carnicka S, Sumbalova Z, Ulicna O, Vancova O, Waczulikova I, Ziegelhoffer A, Ferko M (2014) P406Adaptive changes of rat heart mitochondrial respiration: response of remote ischemic preconditioning. Cardiovasc Res 103 Suppl 1:S74-5. | 2014 | PMID: 25020791 |
Lou 2013 Cardiovasc Res | Lou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS, Zaugg M (2013) Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury. Cardiovasc Res 97:251-61. | 2013 | PMID: 23097573 Open Access |
Lou 2012 Cardiovasc Res | Lou PH, Zhang L, Lucchinetti E, Heck M, Affolter A, Gandhi M, Kienesberger PC, Hersberger M, Clanachan AS, Zaugg M (2012) Infarct-remodeled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischemia/reperfusion injury. Cardiovasc Res 97:251-61. | 2012 | PMID: 23097573 |
Haram 2009 Cardiovasc Res | Haram PM, Kemi OJ, Lee SJ, Bendheim MΓ, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, WislΓΈff U (2009) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81:723-32. | 2009 | PMID: 19047339 Open Access |
Rosca 2008 Cardiovasc Res | Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30-39. | 2008 | PMID:18710878 |
Acker 2006 Cardiovasc Res | Acker T, Fandrey J, Acker H (2006) The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases. Cardiovasc Res 71:195-207. | 2006 | PMID:16740253 Open Access |