O2k-Protocols

Mitochondrial Physiology Network 14.13: 1-5 (2013)

©2009-2013 OROBOROS® Version 3: 2013-06-20

Mitochondrial Respiration Medium -MiR06

Mario Fasching¹, Andrea Eigentler², Mona Fontana-Ayoub¹, Erich Gnaiger^{1,2}

¹OROBOROS INSTRUMENTS Corp, high-resolution respirometry Schöpfstr. 18, A-6020 Innsbruck, Austria <u>erich.gnaiger@oroboros.at; www.oroboros.at</u> ²Medical University of Innsbruck D. Swarovski Research Laboratory 6020 Innsbruck, Austria

Section 1. Mitochondrial Respiration Medium MiR06......1 Page 2. Mitochondrial Preservation Medium MiP03......4 3. References

3. References 5

1. Respiration: Mitochondrial Respiration Medium MiR06

Compounds in MiR05/MiR06	Final conc.	FW	Addition to 1 litre final volume	Source, product code
EGTA	0.5 mM	380.4	0.190 g	Sigma, E 4378 (25 g)
MgCl₂⋅6 H₂O	3 mM	203.3	0.610 g	Scharlau, MA 0036 (250 g)
K-lactobionate	60 mM	358.3 free acid	120 ml of 0.5 M <u>K-lactobionate stock*</u>	Aldrich, 153516 (100 g)
Taurine	20 mM	125.1	2.502 g	Sigma, T 0625 (25 g)
KH ₂ PO ₄	10 mM	136.1	1.361 g	Merck, 104873 (1 kg)
HEPES	20 mM	238.3	4.77 g	Sigma, H 7523 (250 g)
Sucrose	110 mM	342.3	37.65 g	Roth, 4621.1 (1 kg)
BSA, essentially fatty acid free	1 g/l		1 g	Sigma, A 6003 fraction V (25 g)

MiR06 = MiR05 + Catalase (see Gnaiger et al 2000; MiPNet08.05) Total volume = 1 litre.

Weigh given amounts of the listed compounds (except BSA and lactobionic acid) into a 1000 ml glass beaker, disrupt big lumps mechanically, ad 800 ml H_2O and dissolve on a magentic stirrer at 30 °C. Add 120 ml of

K-lactobionate stock solution; adjust the pH to 7.1 (5 N KOH; Sigma P 1767; 1 kg) at 30 °C. Adjust volume with H_2O to a final volume of 1 litre. Dissolve BSA separately in a subsample of the solution (recommended to prevent foam building) and transfer back to the final solution, while stirring continuously but gently. Check pH again and adjust if necessary. Store frozen at -20 °C in plastic vials.

* Preparation of K-lactobionate stock solution:

Dissolve 35.83 g lactobionic acid in 100 ml H_2O , adjust pH to 7.0 with KOH, adjust volume to 200 ml with H_2O .

MiR06 contains the following final concentrations:

Ca ²⁺ free	0.0 µM
Mg ²⁺ free	2.1 mM
K ⁺	90 mM
Na ⁺	0
EGTA free	0.46 mM
Osmolarity	330 mOsm
Ionic strength	95 mM

The ionic strength increases with the addition of substrates and adenylates, particularly in multi-substrate/inhibitor titrations.

- **EGTA** A general chelator for heavy metals, with high affinity for Ca^{2+} but low affinity for Mg²⁺.
- Mg²⁺ Activation by ATP due to ATPase activity is Mg²⁺ dependent. The high quality of mitochondrial preparations cannot be tested in the absence of Mg²⁺. Physiological Mg²⁺ concentration is in the range of 1-3 mM. Several enzyme systems depend on free Mg²⁺.
- Pi The K'm is up to 1 mM in the ADP-activated OXPHOS state in heart mitochondria with glutamate/malate; 90% of maximum flux are reached at 10 mM. Is flux measurably higher at 15 mM?
- **K-lactobionate** The intracellular K⁺ concentration is high (>100 mM), adding significantly to the ionic strength. In many previous studies of isolated mitochondria, KCl was used for this reason, but a high Cl⁻ concentration is unphysiological and inhibitory on mitochondrial creatine kinase (and possibly on other enzymes in the intermembrane space). K-MES or K-methanesulfonate have been used successfully. Lactobionate is well established in (extracellular) organ preservation solutions (University of Wisconsin solution).
- TaurineBiological membrane stabilizer and ROS scavanger. 20mM intracellular concentration in heart.

Histidine	an imidaz of p <i>K</i> ide effect w MITOMED Omitted autooxida	ol-based ntical to as obs 1 with in MiR ition of 7	MPD and ascor	emperatur (α-stat p adding ed endo owing bate in M	e dependence H buffer). No histidine to othelial cells. to increased iR04.
HEPES			ouffer with pK c		
Sucrose	•		oxygen radical	-	
BSA	oxygen ra acids, hei acid free	adical sc nce the BSA is re	•	inds Ca ²⁺ /e essenti	and free fatty ially free fatty
Glutathione	MITOMED endothelia significan adding gli	91 with al cells tly highe utathion	observed with unpermeabiliz (tEC); but back er. This complic to the respirati	zed or (ground (cation is a on mediu	permeabilized oxygen flux is avoided by not m.
98-03-30/04-02	was varia (range -2 0.11 in th	able bet 2.1 to 0. The oxy	glutathion in ween experime 3, N = 6, and $lgraphs (two cha$	ents, with b°' of 0.0 ambers ea	$a^{\circ'}$ of -1.7 53, 0.065 and ach).
Catalase	and impr respiratio high cata titrated in by up to MiR06 is adding c directly in	oves th n mediu alase ac nto the C 200 µr stored atalase nto the	enzyme at hig e antioxidant of m beyond MiR(ctivity, hydroge 2k-chamber to nol/l, e.g. from like MiR05, of stock solution closed O2k-cha experiment.	quality of 05. In th en perox increase n 200 µN r can be (dissolve	physiological pepresence of ide, H_2O_2 , is oxygen levels 1 to 350 μ M. prepared by ed in MiR05)
Compound	Final	FW	Stock solution	Addition	Source and

Compound	Final conc.	FW	Stock solution	Addition to 2 ml final volume	Source and product code
Catalase lyophilized powder, 2,000-5,000 units/mg protein*	280 u/ml*		112000 u/ml,* dissolve in MiR05	5 µl	Sigma C9322
H ₂ O ₂		34.01	200 mM in H ₂ O, adjust to pH 6		Sigma Aldrich 516813 17.6 M, 50% w/w

* Units of enzymatic activity (u) in μ mol/min; assay used by Sigma Aldrich: 'One unit will decompose 1.0 μ mole of H_2O_2 per min at pH 7.0 at 25 °C, while the H_2O_2 concentration falls from 10.3 to 9.2 mM, measured by the rate of decrease of A_{240} .'

H ₂ O ₂	Small volumes (µI) of H ₂ O ₂ are injected into the O2k- chamber filled with MiRO6, to increase oxygen levels. A typical H ₂ O ₂ stock concentration in the syringe is approximately 200 mM. Maintain the pH in the stock solution acidic to minimize autoxidation. Manual injection: Fill a 10 µI syringe with the H ₂ O ₂ solution, inject a small volume, observe the oxygen level displayed by DatLab and inject further H ₂ O ₂ until the desired oxygen level ($\Delta c_{O2} \leq 200 \mu \text{mol/I}$) is reached. Alternatively, the "Oxystat" setup of the TIP2k may be used to reach a desired oxygen level and then maintain the oxygen concentration automatically between set limits in the oxystat-titration mode.
Creatine	MiR06Cr : MiR06Cr = MiR06 plus 20 mM creatine

(Sigma 27900, 100g). MiR06Cr has to be prepared fresh every day.

2. Preservation: Mitochondrial Preservation Medium MiP03

Compound	Final conc.	MW	Addition to 20 ml final volume	Company, product code and storage
Histidine	20 mM	155.2	62.1 mg	Sigma, H8000, RT
Vitamin E	20 µM	530.8	200 µl (2 mM stock)	Sigma, T3126, RT
succinate				
Glutathion	3 mM	307.3	18.4 mg	Sigma, G4251, 4 °C
Leupeptine	1 µM	463.0	20 µl (1 mM stock)	Sigma, L9783, -20 °C
Glutamate	2 mM	169.1	40 µl (1 M stock)	Sigma, G1626, RT
Malate	2 mM	134.1	40 µl (1 M stock)	Sigma, M1000, RT
Mg-ATP	2 mM	614.1	80 µl (500 mM stock)	Sigma, A2383, -20 °C

Take MiR06 and add the following before freezing:

MiP03 preservation medium has the following final concentrations:

Ca ²⁺ free	0.0 µM
Mg ²⁺ free	2.1 mM
K ⁺	90 mM
Na ⁺	4 mM
EGTA free	0.46 mM
Osmolarity	340 mosM
Ionic strength	108 mM

Adjust the pH to 7.1 (5 N KOH) at 30 °C.

Vitamin ED- α -Tocopherol succinate is soluble in chloroform (50 mg/ml) or ethanol, it is practically insoluble in water and it is unstable in alkaline conditions. Solutions of D- α -Tocopherol are stable at 4 °C (light protected) for several months. 20 μ M intracellular concentration in liver.

Leupeptine Soluble in water. The aqueous solution is stable for a week at 4 °C and for at least 6 months as frozen aliquots at -20 °C.

Oxygen solubility factor in MiR05 [1] at 30 °C and 37 °C is 0.92 [3]. The same solubility is valid for MiR06 and MiR06Cr.

3. References

Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Life in the Cold. (Heldmaier G, Klingenspor M, eds) Springer, Heiderlberg, Berlin, New York, pp. 431-442.

Rasmussen HN, Rasmussen UF (2003) Oxygen solubilities of media used in electrochemical respiration measurements. Analyt Biochem 319: 105-113. *The manuscript* (Gnaiger et al 2000) *was sent to Dr. H. Rasmussen, and we appreciate that the oxygen solubility of MiR05 was then determined and published* (Rasmussen 2003). *Surprisingly, no reference was made in ref.* (Rasmussen et al 2003) *to the original publication on MiR05* (MiPNet08.05).

MiPNet08.05 MiPNet03.02 Mitochondrial Respiration Medium - MiR05 (2003).

<u>2</u> Selected media and chemicals for respirometry with mitochondria and permeabilized cells.

MiPNet06.06

and permeabilized cells. Oxygraph assay of cyt *c* oxidase activity: Chemical background correction.

215	This project is funded by the
- 27	Tyrolean Government and the
-	European Regional Development
CILOI	Fund (ERDF) and is subject to the
Compete Comme	regulations of EU law as well as
	to the Directive of the Tyrolean
1 1	
	Government on the Funding of
	Science, Research and Development.

Acknowledgements

Contribution to K-Regio project *MitoCom Tyrol*, funded in part by the Tyrolian Government and the European Regional Development Fund (ERDF). <u>www.oroboros.at/?MitoCom-Tyrol</u>

Author contributions

Gnaiger E with collaboration of Kuznetsov AV was responsible for the development and testing of MiR05 (Gnaiger et al 2000). All authors contributed to various details in the development of MiR06.