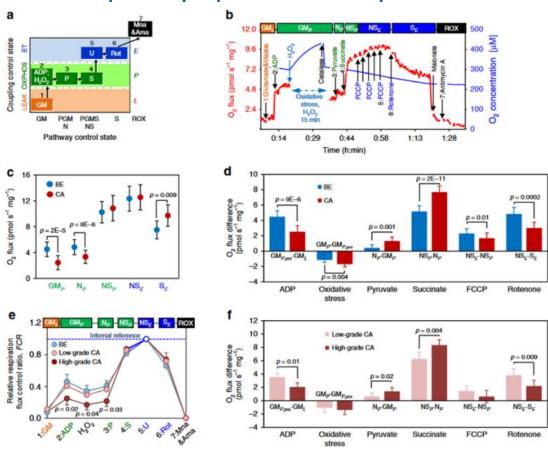
https://wiki.oroboros.at/index.php/O2k-Publications: cancer

High-resolution respirometry: cancer



OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation

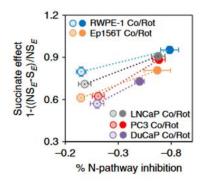
nature communications

Bernd Schöpf 1, Hansi Weissensteiner 1, Georg Schäfer², Federica Fazzini¹, Pornpimol Charoentong³, Andreas Naschberger¹, Bernhard Rupp¹, Liane Fendt¹, Valesca Bukur⁴, Irina Giese⁴, Patrick Sorn⁴, Ana Carolina Sant'Anna-Silva 5, Javier Iglesias-Gonzalez6, Ugur Sahin⁴, Florian Kronenberg 1, Erich Gnaiger 5,6 & Helmut Klocker 7, ™

High-resolution respirometry of prostate tissue samples

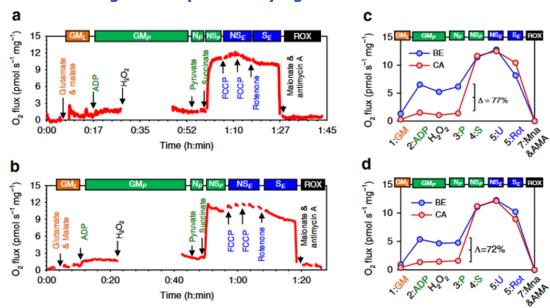
Figure 1. (a) Coupling/pathway control diagram showing the sequential steps in the substrate-uncoupler-inhibitor titration (SUIT) protocol with different coupling states. (b) Representative HRR traces with permeabilized tissue. Red line (left *Y*-axis): wet mass-specific O_2 flux. Blue line (right *Y*-axis): O_2 concentration. Substrate-uncoupler-inhibitor titrations are indicated by arrows. Different coupling/pathway control states are indicated in boxes: LEAK (orange); OXPHOS (green); ET (blue); ROX (black). (c) Respiratory capacity in benign (blue, N = 50) versus malignant (red, N = 50) tissue samples: OXPHOS-capacity (GM_P, N_P and N_P) and ET-capacity (N_R and N_R). (d) Effects of substrates GM, pyruvate, succinate, oxidative stress, uncoupler FCCP, and CI inhibitor rotenone on O_2 flux in benign (blue, N = 50) and malignant (red, N = 50) tissue samples. (e) Normalized respiratory capacities of high-grade tumor (Gleason > 7; dark red; N = 10) and low-grade tumor (Gleason N = 10) and low-grade tumor (Gleason N = 10) and high-grade (dark red, N = 10) tissue samples. Data in (c-f) are presented as mean values N = 100 tissue samples. Data in (c-f) are presented as mean values N = 100.

O2k-brief communicated by AC Bastos and L Tindle-Solomon Oroboros Instruments



https://wiki.oroboros.at/index.php/O2k-Publications: cancer

High-resolution respirometry: cancer



Respiratory capacities in prostate cell lines

Figure 2. S-pathway OXPHOS capacity upregulation by partial inhibition of N-pathway oxidative flux in benign (RWPE1, N = 3; EP156T, N = 3) and malignant (PC3, N = 6; LNCaP, N = 4; DuCaP, N = 3) prostate cell lines. Relative S-pathway OXPHOS capacity (normalized to total respiratory capacity, NS_E) with different degrees of N-pathway inhibition is shown for all the cell lines as Control *versus* treatment with Rotenone (Co/Rot). Values represent mean \pm SD.

Respiration of malignant biopsies carrying variant mutations of CI

Figure 3. (a-b) HRR traces of the malignant biopsies carrying the F411S (a) or the T387A mutation (b), respectively. (c-d) Respiratory capacities of malignant samples (red) carrying either the F411S mutation (c) or the T387A mutation (d), compared to the corresponding benign tissue (blue). Values represent mean \pm SD of the two separate measurements for each tissue sample.

Decreased N-pathway capacity associated with potentially deleterious, high-level mtDNA heteroplasmies in mt-CI genes, higher mtDNA load and increased mt-mass are distinct characteristics of high-grade tumors, highlighting the diagnostic and prognostic potential of metabolic rewiring.

Reference: Schöpf Bernd, Weissensteiner Hansi, Schäfer Georg, Fazzini Federica, Charoentong Pornpimol, Naschberger Andreas, Rupp Bernhard, Fendt Liane, Bukur Valesca, Giese Irina, Sorn Patrick, Sant'Anna-Silva Ana Carolina, Iglesias-Gonzalez Javier, Sahin Ugur, Kronenberg Florian, Gnaiger Erich, Klocker Helmut (2020) OXPHOS remodeling in high-grade prostate cancer involves mtDNA mutations and increased succinate oxidation. Nat Commun 11:1487.

Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. Doi:10.26124/mitofit:190001.v6

O2k-brief communicated by AC Bastos and L Tindle-Solomon Oroboros Instruments

