https://wiki.oroboros.at/index.php/O2k-Publications: Cardiovascular diseases High-resolution respirometry: Cardiac arrest and ischemia/reperfusion injury High-resolution respirometry for evaluation of mitochondrial function on brain and heart homogenates in a rat model of cardiac arrest and cardiopulmonary resuscitation Lian Liang a,b,c,1 , Guozhen Zhang b,d,1 , Cheng Cheng b,e , Hui Li b,e , Tao Jin b , Chenglei Su b , Yan Xiao b , Jennifer Bradley b , Mary A. Peberdy b,f , Joseph P. Ornato b,g , Martin J. Mangino b,h , Wanchun Tang b,g,* ## Experimental high-resolution respirometry protocol to evaluate mitochondrial function **Figure 1.** Exemplary respirometry traces outlining the protocol applied in the high-resolution respirometry experiment. The blue line indicates O_2 concentration (μ M, left Y-axis), the red line indicates O_2 flux in pmol·s⁻¹·mL⁻¹, right Y-axis. N(GPM)_L, NADH-linked LEAK respiration; N(PGM)_P, NADH-linked OXPHOS capacity; S(SR)_P, Succinate-linked OXPHOS capacity; CIV_P, CIV-linked OXPHOS capacity; N-linked respiration = N(GPM)_P—rotenone; S-linked respiration = S(SR)_P—TTFA; CIV-linked respiration = TMPD—azide. net OXPHOS capacity P-L https://wiki.oroboros.at/index.php/O2k-Publications: Cardiovascular diseases High-resolution respirometry: Cardiac arrest and ischemia/reperfusion injury ## Mitochondrial function of heart and brain following ischemia/reperfusion injury after cardiac arrest linked respiration; (F) RCR, respiratory control rates (N(PGM)_P/ N(PGM)_L); (G) P-L net OXPHOS capacity, oxidative phosphorylation coupling efficiency. Note: CA = cardiac arrest, *p<0.05, **p<0.01, ***p<0.001, NS = no significance. All statistical analysis was performed by independent-samples T-test. Data are expressed as the mean \pm SD. Mitochondrial respiratory function was compromised in brain and heart tissue homogenate of a rat model following cardiac arrest (CA) and ischemia/reperfusion (I/R) injury, with a major effect on NADH-linked respiration. Furthermore, comparing heart and brain tissue homogenate, slight differences were observed in ROUTINE and CIV-linked respiration upon global I/R injury after CA. Reference: Liang L, Zhang G, Cheng C, Li H, Jin T, Su C, Xiao Y, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W (2021) Highresolution respirometry for evaluation of mitochondrial function on brain and heart homogenates in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 142:111935. Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. doi:10.26124/bec:2020-0001.v1 **O2k-brief communicated by C Cecatto, S Schmitt and L Tindle-Solomon Oroboros Instruments**