Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Den Hollander 2014 Toxicol Sci

From Bioblast
Publications in the MiPMap
den Hollander B, Sundström M, Pelander A, Ojanperä I, Mervaala E, Korpi ER, Kankuri E (2014) Keto amphetamine toxicity - focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 141:120-31.

» PMID: 24913801

den Hollander B, Sundstrom M, Pelander A, Ojanpera I, Mervaala E, Korpi ER, Kankuri E (2014) Toxicol Sci

Abstract: The β-keto amphetamine (cathinone, β-KA) designer drugs such as mephedrone (4-methylmethcathinone, 4-MMC) show a large degree of structural similarity to amphetamines like methamphetamine (METH). However, little is currently known about whether these substances also share the potential neurotoxic properties of their non-keto amphetamine counterparts, or what mechanisms could be involved. Here, we evaluate the cytotoxicity of β-KAs in SH-SY5Y cells using lactate dehydrogenase (LDH) assays, assess the redox potential of a range of β-KAs and non-keto amphetamines using the sensitive redox indicator 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) and explore the effect of 4-MMC on the formation of protein adducts using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) and on the mitochondrial respiratory chain using high resolution respirometry. We show that treatment with β-KAs increases LDH release. Further, we demonstrate that even under physiological pH, β-KAs are effective and selective-as compared to their non-keto analogues-reductants in the presence of electron acceptors. Increased pH (range 7.6-8.0) greatly enhanced the reactivity up to six-fold. We found no evidence of protein adduct formation, suggesting the reactivity is due to direct electron transfer by the β-KAs. Finally, we show that 4-MMC and METH produce dissimilar effects on the respiratory chain. Our results indicate that β-KAs such as 4-MMC possess cytotoxic properties in vitro. Furthermore, in the presence of an electron-accepting redox partner, the ketone moiety of β-KAs is vital for pH-dependent redox reactivity. Further work is needed to establish the importance of β-KA redox properties and its potential toxicological importance in vivo. Keywords: Cathinones, Mephedrone, Methamphetamine, Neurotoxicity, Protein adducts, Reducing agent, Respiratory chain, β-keto amphetamine

O2k-Network Lab: FI Helsinki Mervaala E


Labels: MiParea: Respiration 


Organism: Mouse  Tissue;cell: Nervous system  Preparation: Homogenate 


Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, NS, ROX  HRR: Oxygraph-2k