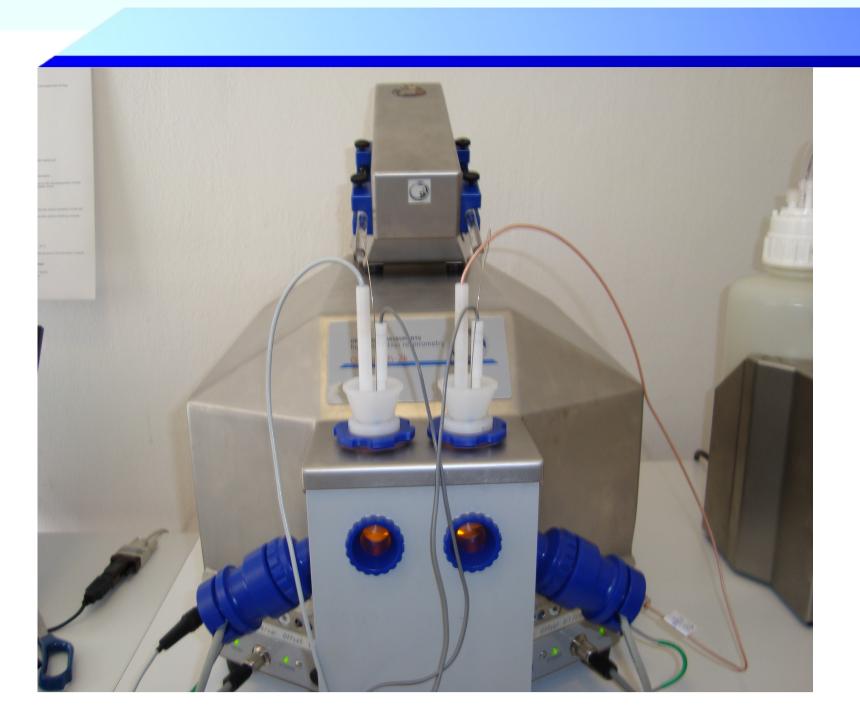

ISE for TPP+ and High-Resolution Respirometry


oroboros instruments
high-resolution respirometry

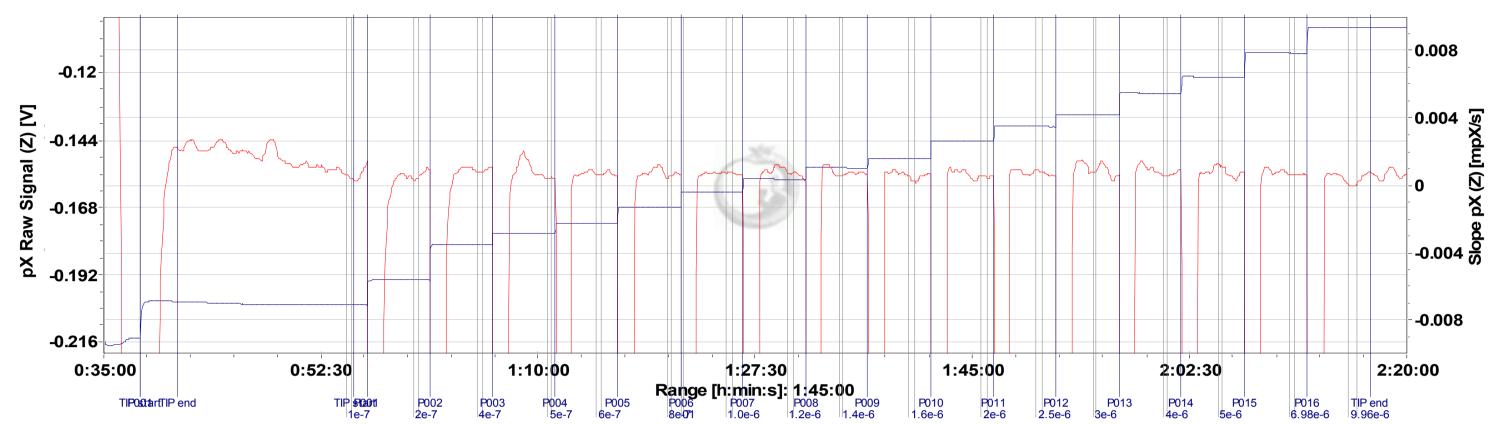
Oxygraph-2k

Zuzana Sumbalová, Mario Fasching, Erich Gnaiger

OROBOROS INSTRUMENTS, Innsbruck, Austria

Features of the OROBOROS TPP ⁺ electrode					
ISE membrane:	+ simple mechanical mounting				
	+ optimized to increase signal stability				
ISE membrane composition:	and minimize side effects by chemical				
	substances such as ethanol and ADP				
High quality inner electrode:	+ signal stability				
PVDF electrode housing:	+ minimal O ₂ storage and diffusion				
	+ minimal carry-over of inhibitors				
Integration into the O2k	+ minimal oxygen diffusion				
chamber :					

Figure 1: Set with 2 TPP⁺ and 2 reference electrodes


Development of a TPP⁺ electrode

Tetraphenylphosphonium (TPP*) accumulates in the mitochondrial matrix as a function of the mitochondrial membrane potential.

Tetraphenylphophonium chloride

The TPP⁺ **electrode** is an ion selective electrode (ISE). The signal [V] of the TPP⁺ electrode is linearly dependent on the logarithm of free [TPP⁺].

The ISE system (OROBOROS INSTRUMENTS) consists of separate measuring and reference electrodes. The ISE are inserted through the stoppers into two chambers of the Oxygraph-2k and connected to the potentiometric channels of the O2k-MultiSensor system, for simultaneous recording of oxygen and TPP⁺.

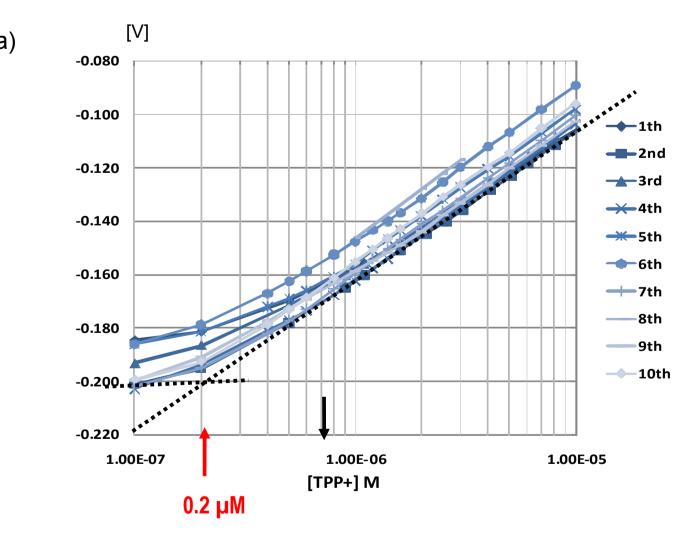
Figure 2: Calibration test of a TPP⁺ **electrode** performed in Oxygraph-2k chamber in MiRO6, 37°C with stirring speed 750 rpm. The calibration solution (1 mM TPPCl in 100 mM KCl) was injected automatically with TIP2k. A calibration range 0.1 -10 μM TPP⁺ was covered in 17 steps at 5 min intervals, using data recording intervals of 1 s.

	Raw signal @ 0 TPP [mV]	Sensitivity @ 1-3 μM TPP [mV/dec]	Critical [TPP †] @ 40 mV/dec [μ M]	Drift of raw signal [mV/s]
Mean ± SD	-196 ± 14	53 ± 5	0.7 ± 0.3	0.0007
	06	00	റാ	00

Table 1: Typical performance parameters of OROBOROS TPP⁺ **electrodes.** Values are calculated from non-amplified signal. The critical sensitivity is defined at 40 mV/decade [mV/dec]. At this sensitivity, the critical [TPP+] was 0.7 μM. The absolute value of drift was measured in all calibration runs in the range 2-5 μM TPP⁺.

A long-term study over 3.5 months

To evaluate the long-term stability of 10 TPP⁺ electrodes without change of membranes


with **rinsing procedure** necessary for removal of inhibitors and uncouplers: **water**, **99% ethanol**, **water**

Design

10 TPP⁺ electrodes were followed for 3.5 months after mounting a new membrane:

- one calibration run (Fig. 2) per electrode every 7-14 days
- 10 runs each electrode

Ethanol: 5 electrodes rinsed with water, 99% ethanol, water Water: 5 electrodes rinsed with water only

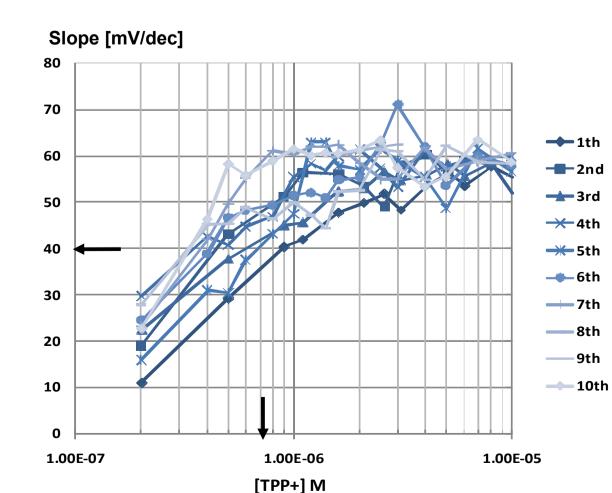


Figure 3: The performance parameters of a TPP⁺ electrode over 3.5 months. a) Non-amplified raw signal [V] as a function of log[TPP⁺]. The parameter of a linear fit slope [mV/dec] represents the sensitivity of ISE.

b) Sensitivity [mV/dec] of non-amplified signal (calculated for each point) as a function of log[TPP $^+$]. The red arrow shows the detection limit of 0.2 μ M, the black arrows show critical [TPP $^+$] of 0.7 μ M (see Table 1).

Results

alibration	Rinsing	Raw signal	Sensitivity	Critical [TPP [†]]	Drift	Response
test	group	@ 0 TPP ⁺	@ 1-3 μM TPP	' @ 40 mV/dec	of raw signal	time
		[mV]	[mV/dec]	[µM]	[mV/s]	[s]
1 st	Ethanol (5)	-199 ± 10	51 ± 4	0.9 ± 0.5	0.0007	14 ± 3
	Water (5)	-213 ± 18 (3)	52 ± 4	1.0 ± 0.4	0.0006	16 ± 6
5 th	Ethanol (5)	-200 ± 14	56 ± 6	0.6 ± 0.3	0.0004	49 ± 10* [#]
	Water (5)	-199 ± 8	54 ± 3	0.7 ± 0.2	0.0002	28 ± 11
10 th	Ethanol (4)	-189 ± 18	54 ± 7	0.9 ± 0.4	0.0006	52 ± 19*
	Water (4)	-198 ± 12	55 ± 5	$0.4 \pm 0.2*$	0.0003	36 ± 14*

Table 2: Performance parameters of TPP⁺ electrodes in the course of the study. Values shown as mean ± SD are calculated from non-amplified signal. Ethanol: electrodes rinsed with water, ethanol, water.

Water: electrodes rinsed with water only, *P<0.05 vs. 1st run in the same group, *P<0.05 vs. water group in the same run.

Ethanol group:

One electrode needed a new membrane after 7th run

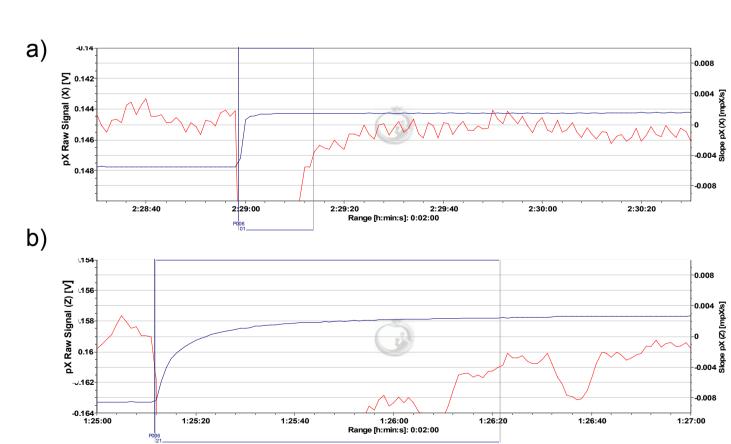


Figure 4: Evaluation of the response time of a TPP⁺ electrode.

a) 1st calibration run
b) 10th calibration run

Figure 5: The response time as a function of number of runs.

a) electrodes rinsed with water, 99% ethanol, water b) electrodes rinsed with water only. The response time was defined as the time after which the slope of the raw signal achieved the value -0.004 mV/s (IUPAC recommendation [1]), measured at the calibration step from 0.8 to 1 μM TPP⁺. The number of data points for time derivation was 10.

Summary

Characteristics of the electrodes:

- 1. High sensitivity: > 40 mV/dec for [TPP $^+$] >0.7 μ M
- 2. Low detection limit: < 0.2 µM TPP+

Long-term performance of the electrodes:

- 1. The zero signal, sensitivity, and critical [TPP+] did not change significantly within 3.5 months (Table 2).
- 2. The response time increased slightly in the course of the study, there is a trend of a faster increase in response times of ethanol-rinsed vs. water-rinsed electrodes (Figure 5).

Conclusions

- 1. Improved performance parameters of the OROBOROS TPP⁺ electrode are the basis for application in mitochondrial physiology with high-resolution respirometry.
- 2. The low detection limit allows for using low [TPP⁺] to avoid inhibition of mitochondrial respiration.
- 3. Rinsing with ethanol is possible, the same membrane can be used on a TPP⁺ electrode for many experiments. The membranes can be changed at intervals to ensure high performance.

Refferences:

1. Buck RP, Lindner E (1994) Recommendation for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). *Pure Appl. Chem.* 66: 2527-2536.

Acknowledgement:

This work was supported by FEMtech, a program of the Federal Ministry for Transport, Innovation and Technology (BMVIT) to promote equal opportunities in research and technology.